
TPU-MLIR Technical Reference Manual
Release 6.1.6

SOPHGO

Jun 21, 2024

Table of Contents

1 TPU-MLIR Introduction 3

2 Environment Setup 5
2.1 Code Download . 5
2.2 Docker Configuration . 5
2.3 ModelZoo (Optional) . 6
2.4 Compilation . 6

3 User Interface 8
3.1 Introduction . 8
3.2 model_transform.py . 10
3.3 run_calibration.py . 12
3.4 run_qtable.py . 13
3.5 model_deploy.py . 14
3.6 Other Tools . 16

3.6.1 model_runner.py . 16
3.6.2 npz_tool.py . 16
3.6.3 visual.py . 17
3.6.4 gen_rand_input.py . 17

4 Overall Design 20
4.1 Layered . 20
4.2 Top Pass . 20
4.3 Tpu Pass . 22
4.4 Other Passes . 23

5 Front-end Conversion 24
5.1 Main Work . 24
5.2 Workflow . 24
5.3 Example . 26

6 Quantization 30
6.1 Basic Concepts . 30

6.1.1 Asymmetric Quantization . 30
6.1.2 Symmetric Quantization . 31

6.2 Scale Conversion . 32
6.3 Quantization derivation . 32

6.3.1 Convolution . 32

i

6.3.2 InnerProduct . 33
6.3.3 Add . 33
6.3.4 AvgPool . 34
6.3.5 LeakyReLU . 34
6.3.6 Pad . 35
6.3.7 PReLU . 35

7 Calibration 36
7.1 General introduction . 36
7.2 Calibration data screening and preprocessing 38

7.2.1 Screening Principles . 38
7.2.2 Input format and preprocessing . 39

7.3 Algorithm Implementation . 40
7.3.1 KLD Algorithm . 40
7.3.2 Auto-tune Algorithm . 40

7.4 Example: yolov5s calibration . 42
7.5 visual tool introduction . 43

8 Lowering 47
8.1 Basic Process . 47
8.2 Mixed precision . 48

9 SubNet 49

10 LayerGroup 50
10.1 Basic Concepts . 50
10.2 BackwardH . 51
10.3 Dividing the Mem Cycle . 51
10.4 LMEM Allocation . 53
10.5 Divide the optimal Group . 55

11 GMEM Allocation 56
11.1 1. Purpose . 56
11.2 1. Principle . 56

11.2.1 2.1. GMEM allocation in weight tensor 56
11.2.2 2.2. GMEM allocation in global neuron tensors 57

12 CodeGen 59
12.1 Main Work . 59
12.2 Workflow . 59
12.3 BM168X and Related classes in TPU-MLIR 60
12.4 Backend Function Loading . 61
12.5 Backend store_cmd . 62

13 MLIR Definition 64
13.1 Top Dialect . 64

13.1.1 Operations . 64

ii

14 Accuracy Validation 83
14.1 Introduction . 83

14.1.1 Objects . 83
14.1.2 Metrics . 83
14.1.3 Datasets . 84

14.2 Validation Interface . 85
14.3 Validation Example . 85

14.3.1 mobilenet_v2 . 85
14.3.2 yolov5s . 87

15 quantzation aware traing 89
15.1 Basic Principles . 89
15.2 tpu-mlir QAT implementation scheme and characteristics 89

15.2.1 Main body flow . 89
15.2.2 Features of the Scheme . 90

15.3 Installation Method . 90
15.3.1 Install from source . 90
15.3.2 Installing the wheel file . 91

15.4 Basic Steps . 91
15.4.1 Step 1: Interface import and model prepare 91
15.4.2 Step 2: Calibration and quantization training 92
15.4.3 Step 3: Export tuned fp32 model . 92
15.4.4 Step 4: Initiate the training . 92
15.4.5 Step 5: Transform deployment . 93

15.5 Use Examples-resnet18 . 93
15.6 Tpu-mlir QAT test environment . 95

15.6.1 Adding a cfg File . 95
15.6.2 Modify and execute run_eval.py . 95

15.7 Use Examples-yolov5s . 96

16 TpuLang Interface 97
16.1 Main Work . 97
16.2 Work Process . 97
16.3 Operator Conversion Example . 99

17 Custom Operators 104
17.1 Overview . 104
17.2 Custom Operator Addition Process . 105

17.2.1 Add TpuLang Custom Operator . 105
17.2.2 Add Caffe Custom Operator . 107

17.3 Custom Operator Example . 108
17.3.1 Example of TpuLang . 108
17.3.2 Example of Caffe . 112

18 Appendix.01: Migrating from NNTC to tpu-mlir 115
18.1 ONNX to MLIR . 115
18.2 Make a quantization calibration table . 116
18.3 Generating int8 models . 117

iii

TABLE OF CONTENTS

Legal Notices
Copyright © SOPHGO 2022. All rights reserved.
No part or all of the contents of this document may be copied, reproduced or transmitted in
any form by any organization or individual without the written permission of the Company.

Attention
All products, services or features, etc. you purchased is subject to SOPHGO’s business
contracts and terms. All or part of the products, services or features described in this
document may not be covered by your purchase or use. Unless otherwise agreed in the
contract, SOPHGO makes no representations or warranties (including express and implied)
regarding the contents of this document. The contents of this document may be updated
from time to time due to product version upgrades or other reasons. Unless otherwise
agreed, this document is intended as a guide only. All statements, information and
recommendations in this document do not constitute any warranty, express or implied.

Technical Support

Address
Building 1, Zhongguancun Integrated Circuit Design Park (ICPARK), No. 9
Fenghao East Road, Haidian District, Beijing

Postcode
100094

URL
https://www.sophgo.com/

Email
sales@sophgo.com

Tel

Copyright © SOPHGO 1

https://www.sophgo.com/
mailto:sales@sophgo.com

TABLE OF CONTENTS

+86-10-57590723
+86-10-57590724

Release Record

Version Release date Explanation

v0.6.0 2022.11.05 support mix precision
v0.5.0 2022.10.20 support test model_zoo models
v0.4.0 2022.09.20 support convert caffe model
v0.3.0 2022.08.24 Support TFLite. Add the chapter on TFLite

model conversion.
v0.2.0 2022.08.02 Add the chapter on test samples in running SDK.
v0.1.0 2022.07.29 Initial release, supporting resnet/mobilenet/vgg/

ssd/yolov5s and using yolov5s as the use case.

Copyright © SOPHGO 2

CHAPTER 1

TPU-MLIR Introduction

TPU-MLIR is a compiler project for Depp Learning processors. This project provides a
complete toolchain, which can convert pre-trained neural networks under different frameworks
into binary files bmodel that can be efficiently run on the processors. The code has been open-
sourced to github: https://github.com/sophgo/tpu-mlir .

The overall architecture of TPU-MLIR is as follows:

Fig. 1.1: TPU-MLIR overall architecture

3

https://github.com/sophgo/tpu-mlir

CHAPTER 1. TPU-MLIR INTRODUCTION

The current directly supported frameworks are onnx, caffe and tflite. Models from other
frameworks need to be converted to onnx models. The method of converting models from
other frameworks to onnx can be found on the onnx official website: https://github.com/
onnx/tutorials.

To convert a model, firstly you need to execute it in the specified docker. With the required
environment, conversion work can be done in two steps, converting the original model to mlir
file by model_transform.py and converting the mlir file to bmodel by model_deploy.py. To
obtain an INT8 model, you need to call run_calibration.py to generate a quantization table
and pass it to model_deploy.py.

This article presents the implementation details to guide future development.

Copyright © SOPHGO 4

https://github.com/onnx/tutorials
https://github.com/onnx/tutorials

CHAPTER 2

Environment Setup

This chapter describes the development environment configuration. The code is compiled and
run in docker.

2.1 Code Download

Github link: https://github.com/sophgo/tpu-mlir

After cloning this code, it needs to be compiled in docker. For specific steps, please refer to
the following.

2.2 Docker Configuration

TPU-MLIR is developed in the Docker environment, and it can be compiled and run after
Docker is configured.

Download the required image from DockerHub https://hub.docker.com/r/sophgo/tpuc_dev
:

$ docker pull sophgo/tpuc_dev:v3.2

If the pulling fails, you can download the required image file from the official website devel-
opment materials https://developer.sophgo.com/site/index/material/86/all.html, or use the
following command to download and load the image:

5

https://github.com/sophgo/tpu-mlir
https://hub.docker.com/r/sophgo/tpuc_dev
https://developer.sophgo.com/site/index/material/86/all.html

CHAPTER 2. ENVIRONMENT SETUP

1 $ wget https://sophon-file.sophon.cn/sophon-prod-s3/drive/24/06/14/12/sophgo-tpuc_dev-v3.2_
↪→191a433358ad.tar.gz

2 $ docker load -i sophgo-tpuc_dev-v3.2_191a433358ad.tar.gz

If you are using docker for the first time, you can execute the following commands to install
and configure it (only for the first time):

1 $ sudo apt install docker.io
2 $ sudo systemctl start docker
3 $ sudo systemctl enable docker
4 $ sudo groupadd docker
5 $ sudo usermod -aG docker $USER
6 $ newgrp docker

Make sure the installation package is in the current directory, and then create a container in
the current directory as follows:

$ docker run --privileged --name myname -v $PWD:/workspace -it sophgo/tpuc_dev:v3.2
"myname" is just an example, you can use any name you want

Note that the path of the TPU-MLIR project in docker should be /workspace/tpu-mlir

2.3 ModelZoo (Optional)

TPU-MLIR comes with the yolov5s model. If you want to run other models, you need to
download them from ModelZoo. The path is as follows:

https://github.com/sophgo/model-zoo

After downloading, put it in the same directory as tpu-mlir. The path in docker should be
/workspace/model-zoo

2.4 Compilation

In the docker container, the code is compiled as follows:

$ cd tpu-mlir
$ source ./envsetup.sh
$./build.sh

Regression validation:

This project contains the yolov5s.onnx model, which can be used directly for validation
$ pushd regression
$ python run_model.py yolov5s
$ popd

You can validate more networks with model-zoo, but the whole regression takes a long time:

Copyright © SOPHGO 6

https://github.com/sophgo/model-zoo

CHAPTER 2. ENVIRONMENT SETUP

The running time is very long, so it is not necessary
$ pushd regression
$./run_all.sh
$ popd

Copyright © SOPHGO 7

CHAPTER 3

User Interface

This chapter introduces the user interface.

3.1 Introduction

The basic procedure is transforming the model into a mlir file with model_transform.py, and
then transforming the mlir into the corresponding model with model_deploy.py. Calibration
is required if you need to get the INT8 model. The general process is shown in the figure
(User interface 1).

Other complex cases such as image input with preprocessing and multiple inputs are also
supported, as shown in the figure (User interface 2).

TFLite model conversion is also supported, with the following command:

TFLite conversion example
$ model_transform.py \
--model_name resnet50_tf \
--model_def ../resnet50_int8.tflite \
--input_shapes [[1,3,224,224]] \
--mean 103.939,116.779,123.68 \
--scale 1.0,1.0,1.0 \
--pixel_format bgr \
--test_input ../image/dog.jpg \
--test_result resnet50_tf_top_outputs.npz \
--mlir resnet50_tf.mlir

$ model_deploy.py \
--mlir resnet50_tf.mlir \
--quantize INT8 \

(continues on next page)

8

CHAPTER 3. USER INTERFACE

(continued from previous page)

--processor bm1684x \
--test_input resnet50_tf_in_f32.npz \
--test_reference resnet50_tf_top_outputs.npz \
--tolerance 0.95,0.85 \
--model resnet50_tf_1684x.bmodel

Supporting the conversion of Caffe models, the commands are as follows:

Caffe conversion example
$ model_transform.py \
--model_name resnet18_cf \
--model_def ../resnet18.prototxt \
--model_data ../resnet18.caffemodel \
--input_shapes [[1,3,224,224]] \
--mean 104,117,123 \
--scale 1.0,1.0,1.0 \
--pixel_format bgr \
--test_input ../image/dog.jpg \
--test_result resnet50_cf_top_outputs.npz \
--mlir resnet50_cf.mlir

The call of model_deploy is consistent with onnx
......

Fig. 3.1: User interface 1

Copyright © SOPHGO 9

CHAPTER 3. USER INTERFACE

Fig. 3.2: User interface 2

3.2 model_transform.py

Used to convert various neural network models into MLIR files, the supported parameters
are shown below:

Copyright © SOPHGO 10

CHAPTER 3. USER INTERFACE

Table 3.1: Function of model_transform parameters

Name Required? Explanation

model_name Y Model name
model_def Y Model definition file (e.g., ‘.onnx’, ‘.tflite’ or

‘.prototxt’ files)
model_data N Specify the model weight file, required when it is caffe

model (corresponding to the ‘.caffemodel’ file)
input_shapes N The shape of the input, such as [[1,3,640,640]] (a two-

dimensional array), which can support multiple inputs
input_types N Type of the inputs, such int32; separate by ‘,’ for

multi inputs; float32 as default
keep_aspect_ratio N Whether to maintain the aspect ratio when resize.

False by default. It will pad 0 to the insufficient part
when setting

mean N The mean of each channel of the image. The default
is 0.0,0.0,0.0

scale N The scale of each channel of the image. The default is
1.0,1.0,1.0

pixel_format N Image type, can be rgb, bgr, gray or rgbd. The default
is bgr

channel_format N Channel type, can be nhwc or nchw for image input,
otherwise it is none. The default is nchw

output_names N The names of the output. Use the output of the model
if not specified, otherwise use the specified names as
the output

add_postprocess N add postprocess op into bmodel, set the type of post
handle op such as yolov3/yolov3_tiny/yolov5/ssd

test_input N The input file for verification, which can be an image,
npy or npz. No verification will be carried out if it is
not specified

test_result N Output file to save verification result
excepts N Names of network layers that need to be excluded from

verification. Separated by comma
onnx_sim N option for onnx-sim, currently only support

‘skip_fuse_bn’ args
mlir Y The output mlir file name (including path)
debug N If open debug, immediate model file will keep; or will

remove after conversion done
tolerance N Minimum similarity tolerance to model transform

After converting to an mlir file, a ${model_name}_in_f32.npz file will be generated, which
is the input file for the subsequent models.

Copyright © SOPHGO 11

CHAPTER 3. USER INTERFACE

3.3 run_calibration.py

Use a small number of samples for calibration to get the quantization table of the network
(i.e., the threshold/min/max of each layer of op).

Supported parameters:

Table 3.2: Function of run_calibration parameters

Name Required? Explanation

(None) Y Mlir file
dataset N Directory of input samples. Images, npz or npy files

are placed in this directory
data_list N The sample list (cannot be used together with

“dataset”)
input_num N The number of input for calibration. Use all samples

if it is 0
tune_num N The number of fine-tuning samples. 10 by default
tune_list N Tune list file contain all input for tune
his-
togram_bin_num

N The number of histogram bins. 2048 by default

o Y Name of output calibration table file
debug_cmd N debug cmd

A sample calibration table is as follows:

genetated time: 2022-08-11 10:00:59.743675
histogram number: 2048
sample number: 100
tune number: 5
###
op_name threshold min max
images 1.0000080 0.0000000 1.0000080
122_Conv 56.4281803 -102.5830231 97.6811752
124_Mul 38.1586478 -0.2784646 97.6811752
125_Conv 56.1447888 -143.7053833 122.0844193
127_Mul 116.7435987 -0.2784646 122.0844193
128_Conv 16.4931355 -87.9204330 7.2770605
130_Mul 7.2720342 -0.2784646 7.2720342
......

It is divided into 4 columns: the first column is the name of the Tensor; the second column
is the threshold (for symmetric quantization); The third and fourth columns are min/max,
used for asymmetric quantization.

Copyright © SOPHGO 12

CHAPTER 3. USER INTERFACE

3.4 run_qtable.py

Use run_qtable.py to generate a mixed precision quantization table. The relevant parameters
are described as follows:

Supported parameters:

Table 3.3: Function of run_qtable.py parameters

Name Required? Explanation

(None) Y Mlir file
dataset N Directory of input samples. Images, npz or npy files

are placed in this directory
data_list N The sample list (cannot be used together with

“dataset”)
calibration_table N The quantization table path
chip Y The platform that the model will use. Support

bm1688/bm1684x/bm1684/cv186x/cv183x/cv182x/cv181x/cv180x
input_num N The number of input for calibration. Use all samples

if it is 10
expected_cos N Expected net output cos
global_compare_layersN Global compare layers, for example: layer1,layer2 or

layer1:0.3,layer2:0.7
fp_type N The precision type, default auto
base_quantize_table N Base quantize table
loss_table N The output loss table, default full_loss_table.txt
o N Output mixed precision quantization table

A sample mixed precision quantization table is as follows:

genetated time: 2022-11-09 21:35:47.981562
sample number: 3
all int8 loss: -39.03119206428528
chip: bm1684x mix_mode: F32
###
op_name quantize_mode
conv2_1/linear/bn F32
conv2_2/dwise/bn F32
conv6_1/linear/bn F32

It is divided into 2 columns: the first column corresponds to the name of the layer, and the
second column corresponds to the quantization mode.

At the same time, a loss table will be generated, the default is full_loss_table.txt, the sample
is as follows:

genetated time: 2022-11-09 22:30:31.912270
sample number: 3

(continues on next page)

Copyright © SOPHGO 13

CHAPTER 3. USER INTERFACE

(continued from previous page)

all int8 loss: -39.03119206428528
chip: bm1684x mix_mode: F32
###
No.0 : Layer: conv2_1/linear/bn Loss: -36.14866065979004
No.1 : Layer: conv2_2/dwise/bn Loss: -37.15774385134379
No.2 : Layer: conv6_1/linear/bn Loss: -38.44639046986898
No.3 : Layer: conv6_2/expand/bn Loss: -39.7430411974589
No.4 : Layer: conv1/bn Loss: -40.067259073257446
No.5 : Layer: conv4_4/dwise/bn Loss: -40.183939139048256
No.6 : Layer: conv3_1/expand/bn Loss: -40.1949667930603
No.7 : Layer: conv6_3/expand/bn Loss: -40.61786969502767
No.8 : Layer: conv3_1/linear/bn Loss: -40.9286363919576
No.9 : Layer: conv6_3/linear/bn Loss: -40.97952524820963
No.10: Layer: block_6_1 Loss: -40.987406969070435
No.11: Layer: conv4_3/dwise/bn Loss: -41.18325670560201
No.12: Layer: conv6_3/dwise/bn Loss: -41.193763415018715
No.13: Layer: conv4_2/dwise/bn Loss: -41.2243926525116
......

It represents the loss of the output obtained after the corresponding Layer is changed to
floating point calculation.

3.5 model_deploy.py

Convert the mlir file into the corresponding model, the parameters are as follows:

Copyright © SOPHGO 14

CHAPTER 3. USER INTERFACE

Table 3.4: Function of model_deploy parameters

Name Required? Explanation

mlir Y Mlir file
quantize Y Quantization type (F32/F16/BF16/INT8)
quant_input N Strip input type cast in bmodel, need outside type con-

version
quant_input_list N choose index to strip cast, such as 1,3 means first &

third input`s cast
quant_output N Strip output type cast in bmodel, need outside type con-

version
quant_output_list N Choose index to strip cast, such as 1,3 means first &

third output`s cast
chip Y The platform that the model will use. Support

bm1688/bm1684x/bm1684/cv186x/cv183x/cv182x/cv181x/cv180x.
calibration_table N The quantization table path. Required when it is INT8

quantization
ig-
nore_f16_overflow

N Operators with F16 overflow risk are still implemented
according to F16; otherwise, F32 will be implemented
by default, such as LayerNorm

tolerance N Tolerance for the minimum similarity between MLIR
quantized and MLIR fp32 inference results

test_input N The input file for verification, which can be an image,
npy or npz. No verification will be carried out if it is
not specified

test_reference N Reference data for verifying mlir tolerance (in npz for-
mat). It is the result of each operator

excepts N Names of network layers that need to be excluded from
verification. Separated by comma

op_divide N cv183x/cv182x/cv181x/cv180x only, Try to split the
larger op into multiple smaller op to achieve the pur-
pose of ion memory saving, suitable for a few specific
models

model Y Name of output model file (including path)
debug N to keep all intermediate files for debug
core N When the target is selected as bm1688, it is used to

select the number of tpu cores for parallel computing,
and the default setting is 1 tpu core

asymmetric N Do INT8 asymmetric quantization
dynamic N Do compile dynamic
includeWeight N Include weight in tosa.mlir
customiza-
tion_format

N Pixel format of input frame to the model

compare_all N Decide if compare all tensors when lowering
num_device N The number of devices to run for distributed computa-

tion
num_core N The number of Tensor Computing Processor cores used

for parallel computation
skip_verification N Skip checking the correctness of bmodel
merge_weight N Merge weights into one weight binary with previous gen-

erated cvimodel
model_version N If need old version cvimodel, set the verion, such as 1.2
q_group_size N Group size for per-group quant, only used in W4A16

quant mode

Copyright © SOPHGO 15

CHAPTER 3. USER INTERFACE

3.6 Other Tools

3.6.1 model_runner.py

Model inference. mlir/pytorch/onnx/tflie/bmodel/prototxt supported.

Example:

$ model_runner.py \
--input sample_in_f32.npz \
--model sample.bmodel \
--output sample_output.npz

Supported parameters:

Table 3.5: Function of model_runner parameters

Name Required? Explanation

input Y Input npz file
model Y Model file (mlir/pytorch/onnx/tflie/bmodel/prototxt)
dump_all_tensors N Export all the results, including intermediate ones, when

specified

3.6.2 npz_tool.py

npz will be widely used in TPU-MLIR project for saving input and output results, etc.
npz_tool.py is used to process npz files.

Example:

Check the output data in sample_out.npz
$ npz_tool.py dump sample_out.npz output

Supported functions:

Table 3.6: npz_tool functions

Function Description

dump Get all tensor information of npz
compare Compare difference of two npz files
to_dat Export npz as dat file, contiguous binary storage

Copyright © SOPHGO 16

CHAPTER 3. USER INTERFACE

3.6.3 visual.py

visual.py is an visualized network/tensor compare application with interface in web browser,
if accuracy of quantized network is not as good as expected, this tool can be used to investigate
the accuracy in every layer.

Example:

use TCP port 9999 in this example
$ visual.py \
--f32_mlir netname.mlir \
--quant_mlir netname_int8_sym_tpu.mlir \
--input top_input_f32.npz --port 9999

Supported functions:

Table 3.7: visual functions

Function Description

f32_mlir fp32 mlir file
quant_mlir quantized mlir file
input test input data for networks, can be in jpeg or npz format.
port TCP port used for UI, default port is 10000，the port should be

mapped when starting docker
host Host ip, default:0.0.0.0
manual_run if net will be automaticall inferenced when UI is opened, default is

false for auto inference

Notice: --debug flag should be opened during model_deploy.py to save intermediate files for
visual.py. More details refer to (visual tool introduction)

3.6.4 gen_rand_input.py

During model transform, if you do not want to prepare additional test data (test_input), you
can use this tool to generate random input data to facilitate model verification.

The basic procedure is transforming the model into a mlir file with model_transform.py.
This step does not perform model verification. And then use gen_rand_input.py to read
the mlir file generated in the previous step and generate random test data for model verifi-
cation. Finally, use model_transform.py again to do the complete model transformation and
verification.

Example:

To MLIR
$ model_transform.py \
--model_name yolov5s \
--model_def ../regression/model/yolov5s.onnx \

(continues on next page)

Copyright © SOPHGO 17

CHAPTER 3. USER INTERFACE

(continued from previous page)

--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio --pixel_format rgb \
--output_names 350,498,646 \
--mlir yolov5s.mlir

Generate dummy input. Here is a pseudo test picture.
$ python gen_rand_input.py
--mlir yolov5s.mlir \
--img --output yolov5s_fake_img.png

Verification
$ model_transform.py \
--model_name yolov5s \
--model_def ../regression/model/yolov5s.onnx \
--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
--scale 0.0039216,0.0039216,0.0039216 \
--test_input yolov5s_fake_img.png \
--test_result yolov5s_top_outputs.npz \
--keep_aspect_ratio --pixel_format rgb \
--output_names 350,498,646 \
--mlir yolov5s.mlir

For more detailed usage, please refer to the following:

Value ranges can be specified for multiple inputs.
$ python gen_rand_input.py \
--mlir ernie.mlir \
--ranges [[0,300],[0,0]] \
--output ern.npz

Type can be specified for the input.
$ python gen_rand_input.py \
--mlir resnet.mlir \
--ranges [[0,300]] \
--input_types si32 \
--output resnet.npz

Generate random image
$ python gen_rand_input.py
--mlir yolov5s.mlir \
--img --output yolov5s_fake_img.png

Supported functions:

Copyright © SOPHGO 18

CHAPTER 3. USER INTERFACE

Table 3.8: gen_rand_input functions

Name Re-
quired?

Explanation

mlir Y The input mlir file name (including path)
img N Used for CV tasks to generate random images, other-

wise generate npz files. The default image value range
is [0,255], the data type is ‘uint8’, and cannot be
changed.

ranges N Set the value ranges of the model inputs, expressed in list
form, such as [[0,300],[0,0]]. If you want to generate a
picture, you do not need to specify the value range, the
default is [0,255]. In other cases, value ranges need to be
specified.

input_types N Set the model input types, such as ‘si32,f32’. ‘si32’
and ‘f32’ types are supported. False by default, and it
will be read from mlir. If you generate an image, you do
not need to specify the data type, the default is ‘uint8’.

output Y The names of the output.

Notice: CV-related models usually perform a series of preprocessing on the input image. To
ensure that the model is verificated correctly, you need to use ‘–img’ to generate a random
image as input. Random npz files cannot be used as input. It is worth noting that random
input may cause model correctness verification to fail, especially NLP-related models, so it is
recommended to give priority to using real test data.

Copyright © SOPHGO 19

CHAPTER 4

Overall Design

4.1 Layered

TPU-MLIR treats the compilation process of the network model in two layers.

Top Dialect
Hardware-independent layer, including graph optimization, quantization and inference,
etc.

Tpu Dialect
Hardware-related layer, including weight reordering, operator slicing, address assign-
ment, inference, etc.

The overall flow is shown in the (TPU-MLIR overall process) diagram, where the model is
gradually converted into final instructions by Passes. Here is a detailed description of what
functions each Pass does in the Top layer and the Tpu layer. The following chapters will
explain the key points of each Pass in detail.

4.2 Top Pass

shape-infer
Do shape inference, and constant folder

canonicalize
Graph optimization related to specific OP, such as merging relu into conv, shape merge,
etc.

extra-optimize
Do extra patterns, such as get FLOPs, remove unuse output, etc.

20

CHAPTER 4. OVERALL DESIGN

Fig. 4.1: TPU-MLIR overall processCopyright © SOPHGO 21

CHAPTER 4. OVERALL DESIGN

processor-assign
Assign processor, such as bm1684x, cv183x, etc; and adjust top mlir by processor, for
example, make all cv18xx input types as F32.

import-calibration-table
Import calibration table, assign min and max for all ops, for quantization later.

processor-top-optimize
Do top ops optimization by processor.

convert-top-to-tpu
Lower top ops to tpu ops; if for mode F32/F16/BF16, top op normally convert to tpu
op directly; if INT8, quantization is needed.

4.3 Tpu Pass

canonicalize
Graph optimization related to specific OP, such as merging of consecutive Requants,
etc.

strip-io-quant
Input and output types will be quantized if true; or be F32

processor-tpu-optimize
Do tpu ops optimization by processor.

weight-reorder
Reorder the weights of individual OP based on processor characteristics, such as filter
and bias for convolution.

subnet-divide
Divide the network into various subnets based on the processor type. If the Tensor
Competing Processor can compute all operators, then it forms a single subnet.

op-reorder
Reorder op to make sure ops are close to their users.

layer-group
Slice the network so that as many OPs as possible are computed consecutively in the
local mem.

address-assign
Assign addresses to the OPs that need global mem.

codegen
Use Builder module to generate the final model in flatbuffers format.

Copyright © SOPHGO 22

CHAPTER 4. OVERALL DESIGN

4.4 Other Passes

There are some optional passes, not in the diagram, used for special functions.

fuse-preprocess
Fuse image preprocess to model.

add-postprocess
add postprocess to model, only support ssd/yolov3/yolov5.

Copyright © SOPHGO 23

CHAPTER 5

Front-end Conversion

This chapter takes the onnx model as an example to introduce the front-end conversion process
of models/operators in this project.

5.1 Main Work

The front-end is mainly responsible for transforming the original model into a Top (hardware-
independent) mlir model (without the Canonicalize part, so the generated file is named
“*_origin.mlir”). This process creates and adds the corresponding operators (Op) based
on the original model and the input arguments when running model_transform.py. The
transformed model and weights will be saved in mlir and npz file respectively.

5.2 Workflow

1. Prereq: definition of the Top layer operator in TopOps.td.

2. Input: input the original onnx model and arguments (preprocessing arguments mainly).

3. Initialize OnnxConverter (load_onnx_model + initMLIRImporter).

· load_onnx_model part is mainly to refine the model, intercept the model according
to the output_names in arguments, and extract the relevant information from the
refined model.

· The init_MLIRImporter part generates the initial mlir text.

4. generate_mlir

24

CHAPTER 5. FRONT-END CONVERSION

· Create the input op, the model intermediate nodes op and the return op in turn
and add them to the mlir text (if the op has tensors, additional weight op will be
created).

5. Output

· Save the simplified model as a “*_opt.onnx” file

· Generate a “.prototxt” file to save the model information except the weights

· Convert the generated text to str and save it as a “.mlir” file

· Save model weights (tensors) in “.npz” file

The workflow of the front-end conversion is shown in the figure (Front-end conversion work-
flow).

Fig. 5.1: Front-end conversion workflow

Additional Notes:

· Build input op requires:

1. input_names.

2. index for each input.

3. preprocessing arguments (if the input is an image).

· Convert nodes op requires:

Copyright © SOPHGO 25

CHAPTER 5. FRONT-END CONVERSION

1. former ops.

2. the output_shape from shapes.

3. attrs extracted from the onnx node. Attrs are set by MLIRImporter according
to definition in TopOps.td.

· Build return op requires:

output ops according to output_names.

· Insertion operation is performed for each op conversion or creation. The operator is
inserted into the mlir text so that the final generated text can one-to-one correspond
with the original onnx model.

5.3 Example

This section takes the Conv onnx operator as an example for Top mlir conversion. The
original model is shown in the figure (Conv onnx model).

The conversion process:

1. Conv op definition

Define the Top.Conv operator in TopOps.td. The definition is shown in the figure
(Top.Conv definition).

2. Initialize OnnxConverter

load_onnx_model:

· Since this example uses the simplest model, the resulting Conv_opt.onnx
model is the same as the original one.

· input_names for saving input name “input” of Conv op.

· The weight and bias of the Conv op are stored in tensors.

· shapes saves input_shape and output_shape of conv op.

· output_names holds the output name of the Conv op “output”.

init_MLIRImporter:

The initial mlir text MLIRImporter.mlir_module is generated based on model
name, input shape and output shape from shapes, as shown in the figure (Initial
mlir text).

3. generate_mlir

· build input op, the generated Top.inputOp will be inserted into MLIRIm-
porter.mlir_module.

· call convert_conv_op(), which calls MLIRImporter.create_conv_op to create a
ConvOp, and the create function takes the following arguments.

Copyright © SOPHGO 26

CHAPTER 5. FRONT-END CONVERSION

Fig. 5.2: Conv onnx model

Copyright © SOPHGO 27

CHAPTER 5. FRONT-END CONVERSION

Fig. 5.3: Top.Conv definition

Fig. 5.4: Initial mlir text

Copyright © SOPHGO 28

CHAPTER 5. FRONT-END CONVERSION

1) inputOp: from (Conv onnx model), we can see that inputs of the Conv operator
contain input, weight and bias. inputOp has been created, and the op of weight
and bias will be created by getWeightOp().

2) output_shape: use onnx_node.name to get the output shape of the Conv
operator from shapes.

3) Attributes: get attributes such as (Conv onnx model) from the onnx Conv
operator.

The attributes of the Top.Conv operator are set according to the definition in
(Top.Conv definition). Top.ConvOp will be inserted into the MLIR text after
it is created.

· Get the output op from operands based on output_names to create return_op
and insert it into the mlir text. Up to this point, the generated mlir text is shown
(Complete mlir text).

Fig. 5.5: Complete mlir text

4. Output

Save the mlir text as Conv_origin.mlir and the weights in the tensors as
Conv_TOP_F32_all_weight.npz.

Copyright © SOPHGO 29

CHAPTER 6

Quantization

The theory of quantization is based on: Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference

Paper link: https://arxiv.org/abs/1712.05877

This chapter introduces the quantization design of TPU-MLIR, focusing on the application
of the paper in practical quantization.

6.1 Basic Concepts

INT8 quantization is divided into symmetric and asymmetric quantization. Symmetric quan-
tization is a special case of asymmetric quantization, and usually, the performance of the
former will be better than the latter, while the accuracy is in contrast.

6.1.1 Asymmetric Quantization

As shown in the figure (Asymmetric quantization), asymmetric quantization is actually the
fixed-pointing of values in the range [min,max] to the interval [-128, 127] or [0, 255].

The quantization formula from int8 to float is:

r = S(q − Z)

S =
max−min

qmax− qmin

Z = Round(−min

S
+ qmin)

where r is the real value of type float and q is the quantized value of type INT8 or UINT8.

30

https://arxiv.org/abs/1712.05877

CHAPTER 6. QUANTIZATION

Fig. 6.1: Asymmetric quantization

S denotes scale, which is float; Z is zeropoint, which is of type INT8.

When quantized to INT8, qmax=127,qmin=-128, and for UINT8, qmax=255,qmin=0.

The quantization formula from float to INT8 is:

q =
r

S
+ Z

6.1.2 Symmetric Quantization

Symmetric quantization is a special case of asymmetric quantization when Z=0. The formula
is:

i8_value = f32_value× 128

threshold

f32_value = i8_value× threshold

128

The range of Tensor is [-threshold, threshold].

For activation, usually S = threshold/128.

For weight, usually S = threshold/127.

In the case of UINT8, the Tensor range is [0, threshold], at this time S = threshold/255.0.

Copyright © SOPHGO 31

CHAPTER 6. QUANTIZATION

6.2 Scale Conversion

The formula in the paper:

M = 2−nM0, wheretherangeofM0is[0.5, 1], andnisanon− negativenumber

In other words, it is the floating point Scale, which can be converted to Multiplier and rshift:

Scale =
Multiplier

2rshift

For example:

y = x× 0.1234

=> y = x× 0.9872× 2−3

=> y = x× (0.9872× 231)× 2−34

=> y = x× 2119995857

1 ≪ 34

=> y = (x× 2119995857) ≫ 34

The higher the number of bits supported by Multiplier, the closer to Scale it will be, but
that leads to worse performance. Therefore, generally, the hardware will use a 32-bit or 8-bit
Multiplier.

6.3 Quantization derivation

We can use quantization formulas and derive quantization for different OPs to get their
corresponding INT8 calculations.

Both symmetric and asymmetric are used for Activation, and for weights generally only
symmetric quantization is used.

6.3.1 Convolution

The abbreviation of Convolution: Y = X(n,ic,ih,iw) ×W(oc,ic,kh,kw) +B(1,oc,1,1).

Substitute it into the int8 quantization formula, the derivation is as follows:

float : Y = X ×W +B

step0 => Sy(qy − Zy) = Sx(qx − Zx)× Swqw +B

step1 => qy − Zy = S1(qx − Zx)× qw +B1

step2 => qy − Zy = S1qx × qw +B2

step3 => qy = S3(qx × qw +B3) + Zy

step4 => qy = (qx × qw + bi32) ∗Mi32 >> rshifti8 + Zy

In particular, for asymmetric quantization, Pad is filled with Zx.

Copyright © SOPHGO 32

CHAPTER 6. QUANTIZATION

In the symmetric case, Pad is filled with 0 (both Zx and Zy are 0).

In PerAxis (or PerChannal) quantization, each OC of Filter will be quantized, and the deriva-
tion formula will remain unchanged, but there will be OC Multiplier and rshift.

6.3.2 InnerProduct

Expression and derivation are the same as (Convolution).

6.3.3 Add

The expression for addition is: Y = A+B

Substitute it into the int8 quantization formula, the derivation is as follows:

float : Y = A+B

step0 => Sy(qy − Zy) = Sa(qa − Za) + Sb(qb − Zb)

step1(Symmetric) => qy = (qa ∗Ma + qb ∗Mb)i16 >> rshifti8

step1(Asymmetric) => qy = requant(dequant(qa) + dequant(qb))

The way to implement Add with Tensor Computing Processor is related to specific processor
instructions.

The symmetric method here is to use INT16 as the intermediate buffer.

The asymmetric method is to first de-quantize into the float, do the addition and then re-
quantize into INT8.

Copyright © SOPHGO 33

CHAPTER 6. QUANTIZATION

6.3.4 AvgPool

The expression of average pooling can be abbreviated as: Yi =
∑k

j=0 (Xj)

k , k = kh× kw.

Substitute it into the int8 quantization formula, the derivation is as follows:

float : Yi =

∑k
j=0 (Xj)

k

step0 : => Sy(yi − Zy) =
Sx

∑k
j=0(xj − Zx)

k

step1 : => yi =
Sx

Syk

k∑
j=0

(xj − Zx) + Zy

step2 : => yi =
Sx

Syk

k∑
j=0

(xj)− (Zy −
Sx

Sy
Zx)

step3 : => yi = (Scalef32

k∑
j=0

(xj)−Offsetf32)i8

Scalef32 =
Sx

Syk
,Offsetf32 = Zy −

Sx

Sy
Zx

6.3.5 LeakyReLU

The expression of LeakyReLU can be abbreviated as: Y =

{
X, ifX ≥ 0

αX, ifX < 0

Substitute it into the int8 quantization formula, the derivation is as follows:

float : Y =

{
X, if X ≥ 0

αX, if X < 0

step0 : => Sy(qy − Zy) =

{
Sx(qx − Zx), if qx ≥ 0

αSx(qx − Zx), if qx < 0

step1 : => qy =

{
Sx
Sy

(qx − Zx) + Zy, if qx ≥ 0

αSx
Sy

(qx − Zx) + Zy, if qx < 0

In INT8 symmetric quantization: Sy =
thresholdy

128 , Sx = thresholdx
128 . In INT8 asymmetric

quantization: Sy =
maxy −miny

255 , Sx = maxx −minx
255 . After BackwardCalibration, maxy =

maxx,miny = minx, thresholdy = thresholdx, so Sx/Sy = 1.

step2 : => qy =

{
(qx − Zx) + Zy, if qx ≥ 0

α(qx − Zx) + Zy, if qx < 0

step3 : => qy =

{
qx − Zx + Zy, if qx ≥ 0

Mi8 >> rshifti8(qx − Zx) + Zy, if qx < 0

In the symmetric case, both Zx and Zy are 0.

Copyright © SOPHGO 34

CHAPTER 6. QUANTIZATION

6.3.6 Pad

The expression of Pad can be abbreviated as: Y =

{
X, origin location

value, padded location

Substitute it into the int8 quantization formula, the derivation is as follows:

float : Y =

{
X, origin location

value, padded location

step0 : => Sy(qy − Zy) =

{
Sx(qx − Zx), origin location

value, padded location

step1 : => qy =

{
Sx
Sy

(qx − Zx) + Zy, origin location
value
Sy

+ Zy, padded location

After BackwardCalibration, maxy = maxx,miny = minx, thresholdy = thresholdx, so Sx/Sy
= 1。

step2 : => qy =

{
(qx − Zx) + Zy, origin location
value
Sy

+ Zy, padded location

In the symmetric case, both Zx and Zy are 0, so the padded value is round(value/Sy). When
asymmetric quantization, the padded value is round(value/Sy + Zy)。

6.3.7 PReLU

The expression of PReLU can be abbreviated as: Yi =

{
Xi, if Xi ≥ 0

αiXi, if Xi < 0

Substitute it into the int8 quantization formula, the derivation is as follows:

float : Yi =

{
Xi, if Xi ≥ 0

αiXi, if Xi < 0

step0 : => Sy(yi − Zy) =

{
Sx(xi − Zx), if xi ≥ 0

SαqαiSx(xi − Zx), if xi < 0

step1 : => yi =

{
Sx
Sy

(xi − Zx) + Zy, if xi ≥ 0

Sαqαi
Sx
Sy

(xi − Zx) + Zy, if xi < 0

After BackwardCalibration, maxy = maxx,miny = minx, thresholdy = thresholdx, so Sx/Sy
= 1。

step2 : => yi =

{
(xi − Zx) + Zy, if xi ≥ 0

Sαqαi(xi − Zx) + Zy, if xi < 0

step3 : => yi =

{
(xi − Zx) + Zy, if xi ≥ 0

qαi ∗Mi8(xi − Zx) >> rshifti8 + Zy, if xi < 0

There are oc Multipliers and 1 rshift. When symmetric quantization, Zx and Zy are both 0.

Copyright © SOPHGO 35

CHAPTER 7

Calibration

7.1 General introduction

Calibration is the use of real scene data to tune the proper quantization parameters. Why
do we need calibration? When we perform asymmetric quantization of the activation, we
need to know the overall dynamic range, i.e., the minmax value, in advance. When apply-
ing symmetric quantization to activations, we need to use a suitable quantization threshold
algorithm to calculate the quantization threshold based on the overall data distribution of
the activation. However, the general trained model does not have the activation statistics.
Therefore, both of them need to inference on a miniature sub-training set to collect the output
activation of each layer. Then aggregate them to obtain the overall minmax and histogram
of the data point distribution. The appropriate symmetric quantization threshold is obtained
based on algorithms such as KLD. Finally, the auto-tune algorithm will be enabled to tune
the quantization threshold of the input activation of a certain int8 layer by making use of
the Euclidean distance between the output activation of int8 and fp32 layers. The above pro-
cesses are integrated together and executed in unison. The optimized threshold and min/max
values for each op are saved in a text file for quantization parameters. Int8 quantization can
be achieved by using this text file in model_deploy.py. The overall process is shown in the
figure (Overall process of quantization).

The following figure (Example of quantization parameters file) shows the final output of the
calibration quantization parameters file

36

CHAPTER 7. CALIBRATION

Fig. 7.1: Overall process of quantization

Copyright © SOPHGO 37

CHAPTER 7. CALIBRATION

Fig. 7.2: Example of quantization parameters file

7.2 Calibration data screening and preprocessing

7.2.1 Screening Principles

Selecting about 100 to 200 images covering each typical scene style in the training
set for calibration. Using a approach similar to training data cleaning to exclude
some anomalous samples.

Copyright © SOPHGO 38

CHAPTER 7. CALIBRATION

7.2.2 Input format and preprocessing

Table 7.1: Input format

Format Description

Original Image For CNN-like vision networks, image input is supported. Image pre-
processing arguments must be the same as in training step when gen-
erating the mlir file by model_transform.py.

npz or npy file For cases where non-image inputs or image preprocessing types are
not supported at the moment, it is recommended to write an addi-
tional script to save the preprocessed input data into npz/npy files
(npz file saves multiple tensors in the dictionary, and npy file only
contains one tensor). run_calibration.py supports direct input of
npz/npy files.

There is no need to specify the preprocessing parameters for the above two formats when
calling run_calibration.py to call the mlir file for inference.

Table 7.2: Methods of speciying parameters

Method Description

–dataset For single-input networks, place images or preprocessed input
npy/npz files (no order required). For multi-input networks, place
the pre-processed npz files of each sample.

–data_list Place the path of the image, npz or npy file of each sample (one sample
per line) in a text file. If the network has more than one input file,
separate them by commas (note that the npz file should have only 1
input path).

Fig. 7.3: Example of data_list required format

Copyright © SOPHGO 39

CHAPTER 7. CALIBRATION

7.3 Algorithm Implementation

7.3.1 KLD Algorithm

The KLD algorithm implemented by tpu-mlir refers to the implementation of tensorRT. In
essence, it cuts off some high-order outliers (the intercepted position is fixed at 128 bin, 256bin
⋯ until 2048 bin) from the waveform of abs (fp32_tensor) (represented by the histogram of
2048 fp32 bins) to get the fp32 reference probability distribution P. This fp32 waveform is
expressed in terms of 128 ranks of int8 type. By merging multiple adjacent bins (e.g., 256 bins
are 2 adjacent fp32 bins) into 1 rank of int8 values, calculating the distribution probability,
and then expanding bins to ensure the same length as P, the probability distribution Q
of the quantized int8 values can be got. The KL divergences of P and Q are calculated
for the interception positions of 128bin, 256bin, ⋯, and 2048 bin, respectively in each loop
until the interception with the smallest divergence is found. Interception here means the
probability distribution of fp32 can be best simulated with the 128 quantization levels of int8.
Therefore, it is most appropriate to set the quantization threshold here. The pseudo-code for
the implementation of the KLD algorithm is shown below:

1 the pseudocode of computing int8 quantize threshold by kld:
2 Prepare fp32 histogram H with 2048 bins
3 compute the absmax of fp32 value
4

5 for i in range(128,2048,128):
6 Outliers_num=sum(bin[i], bin[i+1],⋯, bin[2047])
7 Fp32_distribution=[bin[0], bin[1],⋯, bin[i-1]+Outliers_num]
8 Fp32_distribution/= sum(Fp32_distribution)
9

10 int8_distribution = quantize [bin[0], bin[1],⋯, bin[i]] into 128 quant level
11 expand int8_distribution to i bins
12 int8_distribution /= sum(int8_distribution)
13 kld[i] = KLD(Fp32_distribution, int8_distribution)
14 end for
15

16 find i which kld[i] is minimal
17 int8 quantize threshold = (i + 0.5)*fp32 absmax/2048

7.3.2 Auto-tune Algorithm

From the actual performance of the KLD algorithm, its candidate threshold is relatively
coarse and does not take into account the characteristics of different scenarios, such as object
detection and key point detection, in which tensor outliers may be more important to the per-
formance. In these cases, a larger quantization threshold is required to avoid saturation which
will affect the expression of distribution features. In addition, the KLD algorithm calculates
the quantization threshold based on the similarity between the quantized int8 and the fp32
probability distribution, while there are other methods to evaluate the waveform similarity
such as Euclidean distance, cos similarity, etc. These metrics evaluate the tensor numerical
distribution similarity directly without the need for a coarse interception threshold, which

Copyright © SOPHGO 40

CHAPTER 7. CALIBRATION

most of the time has better performance. Therefore, with the basis of efficient KLD quan-
tization threshold, tpu-mlir proposes the auto-tune algorithm to fine-tune these activations
quantization thresholds based on Euclidean distance metric, which ensures a better accuracy
performance of its int8 quantization.

Implementation: firstly, uniformly pseudo-quantize layers with weights in the network, i.e.,
quantize their weights from fp32 to int8, and then de-quantize to fp32 for introducing quan-
tization error. After that, tune the input activation quantization threshold of op one by
one (i.e., uniformly select 10 candidates among the initial KLD quantization threshold and
maximum absolute values of activations. Use these candidates to quantize fp32 reference ac-
tivation values for introducing quantization error. Input op for fp32 calculation, calculating
the Euclidean distance between the output and the fp32 reference activations. The candidate
with a minimum Euclidean distance will be selected as the tuning threshold). For the case
where the output of one op is connected to multiple subsequent ones, the quantization thresh-
olds are calculated for the multiple branches according to the above method, and then the
larger one is taken. For instance, the output of layer1 will be adjusted for layer2 and layer3
respectively as shown in the figure (Implementation of auto-tune).

Fig. 7.4: Implementation of auto-tune

Copyright © SOPHGO 41

CHAPTER 7. CALIBRATION

7.4 Example: yolov5s calibration

In the docker environment of tpu-mlir, execute source envsetup.sh in the tpu-mlir
directory to initialize the environment, then enter any new directory and execute
the following command to complete the calibration process for yolov5s.

1 $ model_transform.py \
2 --model_name yolov5s \
3 --model_def ${REGRESSION_PATH}/model/yolov5s.onnx \
4 --input_shapes [[1,3,640,640]] \
5 --keep_aspect_ratio \ #keep_aspect_ratio、mean、scale、pixel_format are preprocessing�

↪→arguments
6 --mean 0.0,0.0,0.0 \
7 --scale 0.0039216,0.0039216,0.0039216 \
8 --pixel_format rgb \
9 --output_names 350,498,646 \

10 --test_input ${REGRESSION_PATH}/image/dog.jpg \
11 --test_result yolov5s_top_outputs.npz \
12 --mlir yolov5s.mlir

Table 7.3: The arguments of model_transform.py

Argument Description

model_name Model name
–model_def Model definition file (.onnx,.pt,.tflite or .prototxt)
–model_data Specify the model weight file, required when it is caffe model (corre-

sponding to the ‘.caffemodel’ file)
–input_shapes The shape of the input, such as [[1,3,640,640]] (a two-dimensional

array), which can support multiple inputs
–resize_dims The size of the original image to be adjusted to. If not specified, it

will be resized to the input size of the model
–
keep_aspect_ratio

Whether to maintain the aspect ratio when resize. False by default.
It will pad 0 to the insufficient part when setting

–mean The mean of each channel of the image. The default is 0.0,0.0,0.0
–scale The scale of each channel of the image. The default is 1.0,1.0,1.0
–pixel_format Image type, can be rgb, bgr, gray or rgbd
–output_names The names of the output. Use the output of the model if not specified,

otherwise use the specified names as the output
–test_input The input file for validation, which can be an image, npy or npz. No

validation will be carried out if it is not specified
–test_result Output file to save validation result
–excepts Names of network layers that need to be excluded from validation.

Separated by comma
–debug if open debug, immediate model file will keep; or will remove after

conversion done
–mlir The output mlir file name (including path)

Copyright © SOPHGO 42

CHAPTER 7. CALIBRATION

1 $ run_calibration.py yolov5s.mlir \
2 --dataset $REGRESSION_PATH/dataset/COCO2017 \
3 --input_num 100 \
4 --tune_num 10 \
5 -o yolov5s_cali_table

Table 7.4: The arguments of run_calibration.py

Argument Description

mlir_file mlir file
–dataset dataset for calibration
–data_list Input list file contain all input
–input_num num of images for calibration
–tune_list Tune list file contain all input for tune
–tune_num num of images for tune
–
histogram_bin_num

Specify histogram bin numer for kld calculate

-o output threshold table
–debug_cmd debug command to specify calibration mode; “percentile9999”

initialize the threshold via percentile function, “use_max”
specifies the maximum of absolute value to be the threshold,
“use_torch_observer_for_cali” adopts Torch observer for calibra-
tion.

The result is shown in the following figure (yolov5s_cali calibration result).

7.5 visual tool introduction

visual.py is an visualized net/tensor compare tool with UI in web browser. When quantized
net encounters great accuracy decrease, this tool can be used to investigate the accuracy
loss layer by layer. This tool is started in docker as an server listening to TCP port 10000
(default), and by input localhost:10000 in url of browser in host computer, the tool UI will be
displayed in it, the port must be mapped to host in advance when starting the docker, and
the tool must be start in the same directory where the mlir files located, start command is as
following:

Copyright © SOPHGO 43

CHAPTER 7. CALIBRATION

Fig. 7.5: yolov5s_cali calibration result

Copyright © SOPHGO 44

CHAPTER 7. CALIBRATION

Table 7.5: visual tool parameters

Param Description

–port the TCP port used to listen to browser as server, default value is
10000

–f32_mlir the float mlir net to compare to， this file is produced by
model_transform, and usually with the name of netname.mlir, it is
the base float32 mlir net.

–quant_mlir the quantized mlir net to compare with float net, this file is gen-
erated in model_deploy, usually with netname_int8_sym_tpu.mlir,
_final.mlir to generate bmodel can’t be used here.

–input input data to run the float net and quantized net for data com-
pare, can be image or npy/npz file, can be the test_input when
graph_transform

–manual_run if run the nets when browser connected to server, default is true, if
set false, only the net structure will be displayed

Open browser in host computer and input localhost:9999, the tool UI will be displayed. The
float and quantized net will automatically inference to get output of every layer, if the nets
are huge, it would took a long time to wait! UI is as following:

Areas of the UI is marked with light blue rectangle for reference, dark green comments on
the areas, includeing:

1. working directory and net file indication

2. accuracy summary area

3. layer information area

Copyright © SOPHGO 45

CHAPTER 7. CALIBRATION

4. graph display area

5. tensor data compare figure area

6. infomation summary and tensor distribution area (by switching tabs)

With scroll wheel over graph display area, the displayed net graph can be zoomed in and
out, and hover or click on the nodes (layer), the attributes of it will be displayed in the
layer information card, by clicking on the edges (tensor), the compare of tensor data in float
and quantized net is displayed in tensor data compare figure, and by clicking on the dot in
accuracy summary or information list cells, the layer/tensor will be located in graph display
area.

Notice: the net graph is displayed according to quantized net, and there may be difference in
it comparing to float net, some layer/tensor may not exist in float net, but the data is copied
from quantized net for compare, so the accuracy may seem perfect, but in fact, it should
be ignored. Typical layer is Cast layer in quantized net, in following picture, the non-exist
tensor data type will be NA. Notice: without –debug parameter in deployment of the net,
some essential intermediate files needed by visual tool would have been deleted by default,
please re-deploy with –debug parameter.

information displayed on edge (tensor) is illustrated as following:

Copyright © SOPHGO 46

CHAPTER 8

Lowering

Lowering lowers the Top layer OP to the Tpu layer OP, it supports types of
F32/F16/BF16/INT8 symmetric/INT8 asymmetric.

When converting to INT8, it involves the quantization algorithm. For different processors,
the quantization algorithm is different. For example, some support per-channel and some do
not. Some support 32-bit Multiplier and some only support 8-bit, etc.

Therefore, lowering converts op from the hardware-independent layer (TOP), to the hardware-
related layer (TPU).

8.1 Basic Process

Fig. 8.1: Lowering process

The process of lowering is shown in the figure (Lowering process).

47

CHAPTER 8. LOWERING

· Top op can be divided into f32 and int8. The former is the case of most networks and
the latter is the case of quantized networks such as tflite.

· f32 op can be directly converted to f32/f16/bf16 tpu layer operator. If it is to be
converted to int8, the type should be calibrated_type.

· int8 op can only be directly converted to tpu layer int8 op.

8.2 Mixed precision

Fig. 8.2: Mixed precision

When the type is not the same between OPs, CastOp is inserted as shown in the figure (Mixed
precision).

It is assumed that the type of output is the same as the input. Otherwise, special treatment
is needed. For example, no matter what the type of embedding output is, the input is of type
uint.

Copyright © SOPHGO 48

CHAPTER 9

SubNet

49

CHAPTER 10

LayerGroup

10.1 Basic Concepts

The memory in a Tensor Computing Processor can be categorized into global memory
(GMEM) and local memory (LMEM).

Usually the global memory is very large (e.g., 4GB) while the local memory is quite limited
(e.g., 16MB).

In general, the amount of data and computation of neural network model is very large, so the
OP of each layer usually needs to be sliced and put into local memory for operation, and then
the result is saved to global memory.

LayerGroup enables as many OPs as possible to be executed in local memory after being
sliced, so that it can avoid too many copy operations between local and global memory.

Problem to be solved:
How to keep Layer data in the limited local memory for computing, instead of repeatedly
making copies between local and global memory.

Basic idea:
Slicing the N and H of activation, make the operation of each layer always in local
memory, as shown in the figure (Network slicing example).

50

CHAPTER 10. LAYERGROUP

Fig. 10.1: Network slicing example

10.2 BackwardH

When slicing along the axis of H, the input and output H of most layers are consistent. But
for Conv, Pool, etc., additional calculations are needed.

Take Conv for example, as shown in the figure (Convolutional BackwardH example).

10.3 Dividing the Mem Cycle

How to divide the group? First of all, list the lmem needed for each layer, which can be
broadly classified into three categories:

1. Activation Tensor, which is used to save the input and output results, and is released
directly after there is no user.

2. Weight, used to save the weights, released when there is no slice. Otherwise, always
resides in the lmem.

3. Buffer, used for Layer operation to save intermediate results, released after use.

Then configure the ids in a breadth-first manner, for example, as shown in the figure
(LMEM’s ID assignment).

Then configure the period as shown in (TimeStep assignment).

Details of configuring period are as follows:

· [T2,T7], which means that lmem should be requested at the beginning of T2 and released
at the end of T7.

Copyright © SOPHGO 51

CHAPTER 10. LAYERGROUP

Fig. 10.2: Convolutional BackwardH example

Fig. 10.3: LMEM’s ID assignment

Copyright © SOPHGO 52

CHAPTER 10. LAYERGROUP

Fig. 10.4: TimeStep assignment

· The original period of w4 should be [T5,T5], but it is corrected to [T2,T5], because w4
can be loaded at the same time when T2 does the convolution operation.

· When N or H is sliced, weight does not need to be reloaded and its end point will be
corrected to positive infinity.

10.4 LMEM Allocation

When the slice exists in N or H, weight is resident in LMEM so that each slice can use it.

At this point weight will be allocated first, as shown in the figure (Allocation in the case of
slice)

When there is no slice, weight and activation are handled the same way, and released when
not in use.

The allocation process at this point is shown in the figure (Allocation in the case of no slice).

Then the LMEM allocation problem can be converted into a problem of how to place these
squares (note that these squares can only be moved left and right, not up and down).

In addition, LMEM allocation is better not to cross the bank.

The current strategy is to allocate them in order of op, giving priority to those with long
timestep, followed by those with large LMEM.

Copyright © SOPHGO 53

CHAPTER 10. LAYERGROUP

Fig. 10.5: Allocation in the case of slice

Fig. 10.6: Allocation in the case of no slice

Copyright © SOPHGO 54

CHAPTER 10. LAYERGROUP

10.5 Divide the optimal Group

Fig. 10.7: Group process

At present, the group is divided from the tail to the head. N will be sliced first till the smallest
unit, then H when it is needed.

When the network is very deep, because Conv, Pool and other operators have duplicate
computation parts, too much H slice leads to too many duplicate parts.

In order to avoid too much duplication, it is considered as failed when the input of layer after
backward has duplicated part of h_slice > h/2.

Example: if the input has h = 100, and it is sliced into two inputs, h[0, 80) and h[20, 100),
then the duplicate part is 60. It is considered as failed. The repeated part is 40 when two
inputs are h[0, 60) and h[20, 100), which is considered as success.

Copyright © SOPHGO 55

CHAPTER 11

GMEM Allocation

11.1 1. Purpose

In order to save global memory space and reuse memory space to the greatest extent, GMEM
will be allocated to weight tensor first, and then allocated to all global neuron tensors according
to their life cycle. In addition, allocated GMEM will be reused during the allocation process.

Note: global neuron tensor definition: the tensor that needs to be saved in
GMEM after the Op operation. If it is a LayerGroup op, only the input/output
tensor is considered as global neuron tensor.

11.2 1. Principle

11.2.1 2.1. GMEM allocation in weight tensor

Iterate through all WeightOp and allocate GMEM sequentially with 4K alignment. Address
space will keep accumulating.

56

CHAPTER 11. GMEM ALLOCATION

11.2.2 2.2. GMEM allocation in global neuron tensors

Maximize the reuse of memory space. Allocate GMEM to all global neuron tensors
according to their life cycle, and reuse the allocated GMEM during the allocation
process.

a. Introduction of data structure:
The corresponding tensor, address, size, ref_cnt (how many OPs are using this
tensor) are recorded in rec_tbl at each allocation. The tensor and address are
recorded in the auxiliary data structures hold_edges,in_using_addr respectively.

//Value, offset, size, ref_cnt
using gmem_entry = std::tuple<mlir::Value, int64_t, int64_t, int64_t>;
std::vector<gmem_entry> rec_tbl;
std::vector<mlir::Value> hold_edges;
std::set<int64_t> in_using_addr;

b. Flow description:

· Iterate through each Op, and determine if the input tensor of the Op is

in rec_tbl, if yes, then determine if ref_cnt >= 1, if still yes, ref_cnt

–. This operation means that the number of references to the input

tensor is reduced by one.

If ref_cnt is equal to 0, it means that the life cycle of the tensor
is over, and later tensors can reuse its address space.

· When allocating the output tensor to each Op, we first check whether

the EOL tensor address can be reused. In other words, the rec_tbl must

meet the following 5 conditions before it can be reused:

– The corresponding tensor is not in the hold_edges.

– The address of the corresponding tensor is not in_using_addr

– The corresponding tensor is already EOL.

– The address space of the corresponding tensor >= the space required
by the current tensor.

– The address of the input tensor of the current Op is different from
the address of the corresponding tensor (e.g., the final result of some
Op operations is incorrect, except for reshapeOp).

· Allocate GMEM to the output tensor of the current Op. Reuse it if step2
shows that it can be reused. Otherwise, open a new GMEM in ddr.

· Adjust the lifecycle of the current Op’s input tensor and check if it is in
hold_edges. If yes, look in rec_tbl and check if its ref_cnt is 0. If yes,
remove it from hold_edges as well as its addr from in_using_addr. This

Copyright © SOPHGO 57

CHAPTER 11. GMEM ALLOCATION

operation means that the input tensor has finished its life cycle and the
address space has been released.

Note: EOL definition: end-of-life.

Copyright © SOPHGO 58

CHAPTER 12

CodeGen

The code generation (CodeGen) in TPU-MLIR is the final step of BModel creation. Its
purpose is to convert MLIR files into the final BModel. This chapter introduces the CodeGen
of models/operators in this project.

12.1 Main Work

The purpose of CodeGen is to convert the MLIR file into the BModel file. This process will
execute the CodeGen interface of each op to generate cmdbuf, and use the Builder module to
generate the final BModel in flatbuffers format.

12.2 Workflow

The general process of CodeGen can be divided into three parts: instruction generation,
instruction storage and instruction retrieval.

Instruction generation: Encapsulate the back-end functions of different processors
into classes, execute the op’s CodeGen interface, and generate corresponding
instructions (binary code);

Instruction storage: Store the instruction (binary code) in the specified data struc-
ture through store_cmd;

Instruction retrieval: After the binary codes of all ops are generated, the compiler
will call the function encapsulated in the BM168X series class to retrieve the
instructions, and finally generate the Bmodel.

The workflow is as follows:

59

CHAPTER 12. CODEGEN

Fig. 12.1: CodeGen Workflow

The following introduces the data structures required in the CodeGen process:

The instructions differ based on the processor’s engine, e.g., 1684 has GDMA and TIU,
while new architecture processors like sg2260 have sdma, cdma, etc. Using the most common
engines, BDC (later renamed to TIU) and GDMA, as examples:

std::vector<uint32_t> bdc_buffer;
std::vector<uint32_t> gdma_buffer;
uint32_t gdma_total_id = 0;
uint32_t bdc_total_id = 0;
std::vector<uint32_t> gdma_group_id;
std::vector<uint32_t> bdc_group_id;
std::vector<uint32_t> gdma_bytes;
std::vector<uint32_t> bdc_bytes;
int cmdid_groupnum = 0;
CMD_ID_NODE *cmdid_node;
CMD_ID_NODE *bdc_node;
CMD_ID_NODE *gdma_node;

bdc_buffer: stores bdc instructions

gdma_buffer: stores gdma instructions

gdma_total_id: The total number of gdma instructions stored

bdc_total_id: The total number of bdc instructions stored

gdma_bytes: number of gdma instruction bytes

bdc_bytes: bdc instruction byte number

12.3 BM168X and Related classes in TPU-MLIR

These related classes are defined in the folder tpu-mlir/include/tpu_mlir/Backend. Their
purpose is to encapsulate different processor backends, thereby isolating the backend from
the CodeGen process.

The inheritance relationship is as follows:

Copyright © SOPHGO 60

CHAPTER 12. CODEGEN

Fig. 12.2: BM168X and its related class inheritance relationships in TPU-MLIR

Only one class exists during a single run (singleton design pattern). When this class is
initialized, it undergoes: reading the backend dynamic link library, loading functions (set-
ting backend function pointers), initializing instruction data structures, and setting some
hardware-related parameters like NPU_NUM, L2_SRAM starting address, etc.

12.4 Backend Function Loading

The backend is placed as a dynamic library in the TPU-MLIR project, specifically at
third_party/nntoolchain/lib/libbackend_xxx.so. The loading method of the backend func-
tion is: first define the function pointer, and then load the dynamic library so that the function
pointer points to the function in the dynamic library.

Take the synchronization function tpu_sync_all as an example, as we will add multi-core
support later, it needs to be well-defined in the relevant backend cmodel library.

1. Make sure to keep the function name and parameters consistent: `typedef void
(*tpu_sync_all)();

2. Add this function member within the class: `tpu_sync_all, dl_tpu_sync_all;

3. Add the macro, CAST_FUNCTION(tpu_sync_all), to the implementation of this
type of load_functions function; This macro can point dl_tpu_sync_all to the
function in the dynamic library.

After obtaining an instance of this class, we can use the functions in the dynamic library.

Copyright © SOPHGO 61

CHAPTER 12. CODEGEN

12.5 Backend store_cmd

The function store_cmd in the backend refers to the process where the compiler calls
the operators and saves the configured instructions to the designated space. The key
function in the backend is in store_cmd.cpp; for example, cmodel/src/store_cmd.cpp;
cmodel/include/store_cmd.h. store_cmd has a series of EngineStorer and CmdStorer classes:

1. EngineStoreInterface (interface class), GDMAEngineStorer, BDEngineStorer
and other specific classes that inherit from the EngineStoreInterface interface, En-
gineStorerDecorator (decoration class interface), VectorDumpEngineStorerDeco-
rator and other specific decoration classes that inherit from EngineStorerDecorator
2. CmdStorerInterface (interface), ConcretCmdStorer inherited from the inter-
face, StorerDecorator: decoration interface, VectorDumpStorerDecorator specific
decoration class.

Relationship and Logic Among the Classes:

1. Using the singleton design pattern, there is only one ‘ConcretCmdStorer’ class
in ‘store_cmd’, which will store all ‘EngineStorer’ classes. When different
engines are called, different ‘EengineStorers’ will be called, as shown in the code
below.

virtual void store_cmd(int engine_id, void *cmd, CMD_ID_NODE *cur_id_
↪→node, int port) override
{
switch (engine_id)
{
case ENGINE_BD:
case ENGINE_GDMA:
case ENGINE_HAU:
case ENGINE_SDMA:
port = 0;
break;

case ENGINE_CDMA:
ASSERT(port < CDMA_NUM);
break;

case ENGINE_VSDMA:
engine_id = ENGINE_SDMA;
break;

default:
ASSERT(0);
break;

}
return this->get(engine_id, port)->store(cmd, cur_id_node);

}

2. The function of ‘EngineStorer’ is to parse commands. ‘VectorDumpEngine-
StorerDecorator’ executes the ‘store’ function and ‘take_cmds’ function in
the ‘EngineStorer’ class to store all instructions in output_.

Copyright © SOPHGO 62

CHAPTER 12. CODEGEN

class VectorDumpEngineStorerDecorator : public EngineStorerDecorator
{
private:
std::vector<uint32_t> *&output_;

void take_cmds()
{
auto cmds = EngineStorerDecorator::get_cmds();
(*output_).insert((*output_).end(), cmds.begin(), cmds.end());

}

public:
VectorDumpEngineStorerDecorator(ComponentPtr component, std::vector

↪→<uint32_t> **output)
: EngineStorerDecorator(component), output_(*output) {}

virtual void store(void *cmd, CMD_ID_NODE *cur_id_node) override
{
EngineStorerDecorator::store(cmd, cur_id_node);
if (!enabled_)
return;

this->take_cmds();
}

virtual void store_cmd_end(unsigned dep) override
{
EngineStorerDecorator::store_cmd_end(dep);
this->take_cmds();

}
};

Copyright © SOPHGO 63

CHAPTER 13

MLIR Definition

This chapter introduces the definition of each element of MLIR, including Dialect, Interface,
etc.

13.1 Top Dialect

13.1.1 Operations

AddOp

Brief intro
Add operation, Y = coeff0 ∗X0 + coeff1 ∗X1

Input

· inputs: tensor array, corresponding to 2 or more input tensors

Output

· output: tensor

Attributes

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

· coeff: the coefficient corresponding to each tensor, 1.0 by default

64

CHAPTER 13. MLIR DEFINITION

Output

· output: tensor

Interface
None

Example

%2 = "top.Add"(%0, %1) {do_relu = false} : (tensor<1x3x27x27xf32>, tensor
↪→<1x3x27x27xf32>) -> tensor<1x3x27x27xf32> loc("add")

AvgPoolOp

Brief intro
Perform average pooling on the input tensor, S = 1

width ∗ height

∑
i,j aij ,

where width and height represent the width and height of the kernel_shape.∑
i,j aij means to sum the kernel_shape. A sliding window of a given size

will sequentially pool the input tensor

Input

· input: tensor

Output

· output: tensor

Attributes

· kernel_shape: controls the size of the sliding window

· strides: step size, controlling each step of the sliding window

· pads: controls the shape of the padding

· pad_value: padding content, constant, 0 by default

· count_include_pad: whether the result needs to count the pads filled

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%90 = "top.AvgPool"(%89) {do_relu = false, kernel_shape = [5, 5], pads = [2, 2,
↪→ 2, 2], strides = [1, 1]} : (tensor<1x256x20x20xf32>) -> tensor
↪→<1x256x20x20xf32> loc("resnetv22_pool1_fwd_GlobalAveragePool")

Copyright © SOPHGO 65

CHAPTER 13. MLIR DEFINITION

Depth2SpaceOp

Brief intro
Depth to space operation, Y = Depth2Space(X)

Input

· inputs: tensor

Output

· output: tensor

Attributes

· block_h: tensor block size of h dimension, i64 type

· block_w: tensor block size of w dimension, i64 type

· is_CRD: column-row-depth. If true, the data is arranged in the depth
direction according to the order of HWC, otherwise it is CHW, bool type

· is_inversed: if true, the shape of the result is: [n, c ∗ blockh ∗
blockw, h/blockh, w/blockw], otherwise it is: [n, c/(blockh ∗ blockw), h ∗
blockh, w ∗ blockw], bool type

Output

· output: tensor

Interface
None

Example

%2 = "top.Depth2Space"(%0) {block_h = 2, block_w = 2, is_CRD = true, is_
↪→inversed = false} : (tensor<1x8x2x3xf32>) -> tensor<1x2x4x6xf32> loc("add")

BatchNormOp

Brief intro
Perform Batch Normalization on a 4D input tensor. More details on batch
normalization can be found in the paper “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift .

The specific calculation formula is as follows:

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β

Input

· input: 4D input tensor

Copyright © SOPHGO 66

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

CHAPTER 13. MLIR DEFINITION

· mean: mean of the input tensor

· variance: variance of the input tensor

· gamma: γ tensor in the formula, can be None

· beta: β tensor in the formula, can be None

Output

· output: tensor

Attributes

· epsilon: constant ϵ in formula, 1e-05 by default

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%5 = "top.BatchNorm"(%0, %1, %2, %3, %4) {epsilon = 1e-05, do_relu = false}
↪→ : (tensor<1x3x27x27xf32>, tensor<3xf32>, tensor<3xf32>, tensor<3xf32>,�
↪→tensor<3xf32>) -> tensor<1x3x27x27xf32> loc("BatchNorm")

CastOp

(To be implemented)

ClipOp

Brief intro
Constrain the given input to a certain range

Input

· input: tensor

Output

· output: tensor

Attributes

· min: the lower limit

· max: the upper limit

Output

Copyright © SOPHGO 67

CHAPTER 13. MLIR DEFINITION

· output: tensor

Interface
None

Example

%3 = "top.Clip"(%0) {max = 1%: f64,min = 2%: f64} : (tensor<1x3x32x32xf32>
↪→) -> tensor<1x3x32x32xf32> loc("Clip")

ConcatOp

Brief intro
Concatenates the given sequence of tensors in the given dimension. All input
tensors either have the same shape (except the dimension to be concatenated)
or are all empty.

Input

· inputs: tensor array, corresponding to 2 or more input tensors

Output

· output: tensor

Attributes

· axis: the subscript of the dimension to be concatenated

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%2 = "top.Concat"(%0, %1) {axis = 1, do_relu = false} : (tensor
↪→<1x3x27x27xf32>, tensor<1x3x27x27xf32>) -> tensor<1x6x27x27xf32> loc(
↪→"Concat")

Copyright © SOPHGO 68

CHAPTER 13. MLIR DEFINITION

ConvOp

Brief intro
Perform 2D convolution operation on the input tensor.

In simple terms, the size of the given input is (N,Cin,H,W). The output
(N,Cout,Hout,Wout) is calculated as:

out(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj , k) ⋆ input(Ni, k),

where ⋆ is a valid cross-correlation operation, N is the batch size, C is the
number of channels, H,W is the input image height and width.

Input

· input: tensor

· filter: parameter tensor. The shape is

(out_channels, in_channels
groups , kernel_size[0], kernel_size[1])

· bias: learnable bias tensor with the shape of (out_channels)

Output

· output: tensor

Attributes

· kernel_shape: the size of the convolution kernel

· strides: strides of convolution

· pads: the number of layers to add 0 to each side of the input

· group: the number of blocked connections from the input channel to the
output channel, the default is 1

· dilations: the spacing between convolution kernel elements, optional

· inserts: optional

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%2 = "top.Conv"(%0, %1) {kernel_shape = [3, 5], strides = [2, 1], pads = [4, 2]}
↪→ : (tensor<20x16x50x100xf32>, tensor<33x3x5xf32>) -> tensor
↪→<20x33x28x49xf32> loc("Conv")

Copyright © SOPHGO 69

CHAPTER 13. MLIR DEFINITION

DeconvOp

Brief intro
Perform a deconvolution operation on the input tensor.

Input

· input: tensor

· filter: parameter tensor. The shape is

(out_channels, in_channels
groups , kernel_size[0], kernel_size[1])

· bias: learnable bias tensor with the shape of (out_channels)

Output

· output: tensor

Attributes

· kernel_shape: the size of the convolution kernel

· strides: strides of convolution

· pads: the number of layers to add 0 to each side of the input

· group: the number of blocked connections from the input channel to the
output channel, the default is 1

· dilations: the spacing between convolution kernel elements, optional

· inserts: optional

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%2 = "top.Deconv"(%0, %1) {kernel_shape = (3, 5), strides = (2, 1), pads = (4,
↪→ 2)} : (tensor<20x16x50x100xf32>, tensor<33x3x5xf32>) -> tensor
↪→<20x33x28x49xf32> loc("Deconv")

Copyright © SOPHGO 70

CHAPTER 13. MLIR DEFINITION

DivOp

Brief intro
Division operation, Y = X0/X1

Input

· inputs: tensor array, corresponding to 2 or more input tensors

Output

· output: tensor

Attributes

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

· multiplier: the multiplier for quantization, the default is 1

· rshift: right shift for quantization, 0 by default

Output

· output: tensor

Interface
None

Example

%2 = "top.Div"(%0, %1) {do_relu = false, relu_limit = -1.0, multiplier = 1,�
↪→rshift = 0} : (tensor<1x3x27x27xf32>, tensor<1x3x27x27xf32>) -> tensor
↪→<1x3x27x27xf32> loc("div")

InputOp

(To be implemented)

LeakyReluOp

Brief intro
Apply the LeakyRelu function on each element in the tensor. The function
can be expressed as: f(x) = alpha * x for x < 0, f(x) = x for x >= 0

Input

· input: tensor

Output

Copyright © SOPHGO 71

CHAPTER 13. MLIR DEFINITION

· output: tensor

Attributes

· alpha: the coefficients corresponding to each tensor

Output

· output: tensor

Interface
None

Example

%4 = "top.LeakyRelu"(%3) {alpha = 0.67000001668930054 : f64} : (tensor
↪→<1x32x100x100xf32>) -> tensor<1x32x100x100xf32> loc("LeakyRelu")

LSTMOp

Brief intro
Perform the LSTM operation of the RNN

Input

· input: tensor

Output

· output: tensor

Attributes

· filter: convolution kernel

· recurrence: recurrence unit

· bias: parameter of LSTM

· initial_h: Each sentence in LSTM will get a state after the current cell.
The state is a tuple(c, h), where h=[batch_size, hidden_size]

· initial_c: c=[batch_size, hidden_size]

· have_bias: whether to set bias, the default is false

· bidirectional: set the LSTM of the bidirectional loop, the default is false

· batch_first: whether to put the batch in the first dimension, the default
is false

Output

· output: tensor

Interface
None

Copyright © SOPHGO 72

CHAPTER 13. MLIR DEFINITION

Example

%6 = "top.LSTM"(%0, %1, %2, %3, %4, %5) {batch_first = false, bidirectional�
↪→= true, have_bias = true} : (tensor<75x2x128xf32>,tensor<2x256x128xf32>,
↪→ tensor<2x256x64xf32>, tensor<2x512xf32>, tensor<2x2x64xf32>, tensor
↪→<2x2x64xf32>) -> tensor<75x2x2x64xf32> loc("LSTM")

LogOp

Brief intro
Perform element-wise logarithm on the given input tensor

Input

· input: tensor

Output

· output: tensor

Attributes
None

Output

· output: tensor

Interface
None

Example

%1 = "top.Log"(%0) : (tensor<1x3x32x32xf32>) -> tensor<1x3x32x32xf32> loc(
↪→"Log")

MaxPoolOp

Brief intro
Perform max pool on the given input tensor

Input

· input: tensor

Output

· output: tensor

Attributes

· kernel_shape: controls the size of the sliding window

· strides: step size, controlling each step of the sliding window

Copyright © SOPHGO 73

CHAPTER 13. MLIR DEFINITION

· pads: controls the shape of the padding

· pad_value: padding content, constant, 0 by default

· count_include_pad: whether the result needs to count the pads filled

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%8 = "top.MaxPool"(%7) {do_relu = false, kernel_shape = [5, 5], pads = [2, 2,
↪→ 2, 2], strides = [1, 1]} : (tensor<1x256x20x20xf32>) -> tensor
↪→<1x256x20x20xf32> loc("resnetv22_pool0_fwd_MaxPool")

MatMulOp

Brief intro
2D matrix multiplication operation, C = A ∗B

Input

· input: tensor: matrix of size m*k

· right: tensor: matrix of size k*n

Output

· output: tensor: matrix of size m*n

Attributes

· bias: the bias_scale will be calculated according to the bias during quan-
tization (can be empty)

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Output

· output: tensor

Interface
None

Example

Copyright © SOPHGO 74

CHAPTER 13. MLIR DEFINITION

%2 = "top.MatMul"(%0, %1) {do_relu = false, relu_limit = -1.0} : (tensor
↪→<3x4xf32>, tensor<4x5xf32>) -> tensor<3x5xf32> loc("matmul")

MulOp

Brief intro
multiplication operation, Y = X0 ∗X1

Input

· inputs: tensor array, corresponding to 2 or more input tensors

Output

· output: tensor

Attributes

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

· multiplier: the multiplier for quantization, the default is 1

· rshift: right shift for quantization, default is 0

Output

· output: tensor

Interface
None

Example

%2 = "top.Mul"(%0, %1) {do_relu = false, relu_limit = -1.0, multiplier = 1,�
↪→rshift = 0} : (tensor<1x3x27x27xf32>, tensor<1x3x27x27xf32>) -> tensor
↪→<1x3x27x27xf32> loc("mul")

MulConstOp

Brief intro
Multiply with a constant, Y = X ∗ ConstV al

Input

· inputs: tensor

Output

· output: tensor

Copyright © SOPHGO 75

CHAPTER 13. MLIR DEFINITION

Attributes

· const_val: constants of type f64

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Output

· output: tensor

Interface
None

Example

%1 = arith.constant 4.7 : f64
%2 = "top.MulConst"(%0) {do_relu = false, relu_limit = -1.0} : (tensor
↪→<1x3x27x27xf64>, %1) -> tensor<1x3x27x27xf64> loc("mulconst")

PermuteOp

Brief intro
Change the tensor layout. Change the order of tensor data dimensions, and
rearrange the input tensor according to the given order

Input

· inputs: tensor array, tensor of any types

Attributes

· order: the order in which tensors are rearranged

Output

· output: rearranged tensor

Interface
None

Example

%2 = "top.Permute"(%1) {order = [0, 1, 3, 4, 2]} : (tensor<4x3x85x20x20xf32>
↪→) -> tensor<4x3x20x20x85xf32> loc("output_Transpose")

Copyright © SOPHGO 76

CHAPTER 13. MLIR DEFINITION

ReluOp

Brief intro
Performs the ReLU function on each element in the input tensor, if the limit
is zero, the upper limit is not used

Input

· input: tensor

Output

· output: tensor

Attributes

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Output

· output: tensor

Interface
None

Example

%1 = "top.Relu"(%0) {relu_limit = 6.000000e+00 : f64} : (tensor
↪→<1x3x32x32xf32>) -> tensor<1x3x32x32xf32> loc("Clip")

ReshapeOp

Brief intro
Reshape operator, which returns a tensor of the given shape with the same
type and internal values as the input tensor. Reshape may operate on any
row of the tensor. No data values will be modified during the reshaping
process

Input

· input: tensor

Output

· output: tensor

Attributes
None

Interface
None

Example

Copyright © SOPHGO 77

CHAPTER 13. MLIR DEFINITION

%133 = "top.Reshape"(%132) : (tensor<1x255x20x20xf32>) -> tensor
↪→<1x3x85x20x20xf32> loc("resnetv22_flatten0_reshape0_Reshape")

ScaleOp

Brief intro
Scale operation Y = X ∗S+B, where the shape of X/Y is [N, C, H, W], and
the shape of S/B is [1, C, 1, , 1].

Input

· input: tensor

· scale: the magnification of the input

· bias: the bias added after scaling

Output

· output: tensor

Attributes

· do_relu: whether to perform Relu operation on the result, False by
default

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Interface
None

Example

%3 = "top.Scale"(%0, %1, %2) {do_relu = false} : (tensor<1x3x27x27xf32>,�
↪→tensor<1x3x1x1xf32>, tensor<1x3x1x1xf32>) -> tensor<1x3x27x27xf32> loc(
↪→"Scale")

SigmoidOp

Brief intro
The activation function, which maps elements in the tensor to a specific
interval, [0, 1] by default. The calculation method is:

Y =
scale

1 + e−X
+ bias

Input

· inputs: tensor array, tensor of any types

Attributes

Copyright © SOPHGO 78

CHAPTER 13. MLIR DEFINITION

· scale: the magnification of the input, 1 by default

· bias: default is 0

Output

· output: tensor

Interface
None

Example

%2 = "top.Sigmoid"(%1) {bias = 0.000000e+00 : f64, scale = 1.000000e+00 : f64}
↪→ : (tensor<1x16x64x64xf32>) -> tensor<1x16x64x64xf32> loc("output_
↪→Sigmoid")

SiLUOp

Brief intro
The activation function, Y = X

1+e−X or Y = X ∗ Sigmoid(X)

Input

· input: tensor array, tensor of any types

Attributes
None

Output

· output: tensor

Interface
None

Example

%1 = "top.SiLU"(%0) : (tensor<1x16x64x64xf32>) -> tensor<1x16x64x64xf32>
↪→ loc("output_Mul")

SliceOp

Brief intro
Tensor slice, slicing each dimension of the input tensor according to the offset
and step size in the offset and steps arrays to generate a new tensor

Input

· input: tensor array, tensor of any types

Attributes

Copyright © SOPHGO 79

CHAPTER 13. MLIR DEFINITION

· offset: an array for storing slice offsets. The index of the offset array
corresponds to the dimension index of the input tensor

· steps: an array that stores the step size of the slice. The index of the
steps array corresponds to the index of the input tensor dimension

Output

· output: tensor

Interface
None

Example

%1 = "top.Slice"(%0) {offset = [2, 10, 10, 12], steps = [1, 2, 2, 3]} : (tensor
↪→<5x116x64x64xf32>) -> tensor<3x16x16x8xf32> loc("output_Slice")

SoftmaxOp

Brief intro
For the input tensor, the normalized index value is calculated on the dimen-
sion of the specified axis. The calculation method is as follows:

σ(Z)i =
eβZi∑K−1

j=0 eβZj
,

where
∑K−1

j=0 eβZj does the exponential summation on the axis dimension.
j ranges from 0 to K-1 and K is the size of the input tensor in the axis
dimension.

For example, the size of the input tensor is (N,C,W,H), and the Softmax is
calculated on the channel of axis=1. The calculation method is:

Yn,i,w,h =
eβXn,i,w,h∑C−1

j=0 eβXn,j,w,h

Input

· input: tensor array, tensor of any types

Attributes

· axis: dimension index, which is used to specify the dimension to perform
softmax. It can take the value from [-r, r-1], where r is the number
of dimensions of the input tensor. When axis is negative, it means the
reverse order dimension

· beta: The scaling factor for the input in the tflite model, invalid for
non-tflite models, 1.0 by default.

Output

Copyright © SOPHGO 80

CHAPTER 13. MLIR DEFINITION

· output: the tensor on which the softmax is performed.

Interface
None

Example

%1 = "top.Softmax"(%0) {axis = 1 : i64} : (tensor<1x1000x1x1xf32>) -> tensor
↪→<1x1000x1x1xf32> loc("output_Softmax")

SqueezeOp

Brief intro
Crop the input tensor with the specified dimension and return the cropped
tensor

Input

· input: tensor

Output

· output: tensor

Attributes

· axes: specifies the dimension to be cropped. 0 represents the first dimen-
sion and -1 represents the last dimension

Interface
None

Example

%133 = "top.Squeeze"(%132) {axes = [-1]} : (tensor<1x255x20x20xf32) -> tensor
↪→<1x255x20xf32> loc(#loc278)

UpsampleOp

Brief intro
Upsampling op, upsampling the input tensor nearest and returning the tensor

Input
tensor

Attributes

· scale_h: the ratio of the height of the target image to the original image

· scale_w: the ratio of the width of the target image to the original image

· do_relu: whether to perform Relu operation on the result, False by
default

Copyright © SOPHGO 81

CHAPTER 13. MLIR DEFINITION

· relu_limit: specify the upper limit value if doing Relu. There is no upper
limit if it is a negative number

Output

· output: tensor

Interface
None

Example

%179 = "top.Upsample"(%178) {scale_h = 2 : i64, scale_w = 2 : i64} : (tensor
↪→<1x128x40x40xf32>) -> tensor<1x128x80x80xf32> loc("268_Resize")

WeightOp

Brief intro
The weight op, including the reading and creation of weights. Weights will
be stored in the npz file. The location of the weight corresponds to the tensor
name in npz.

Input
None

Attributes
None

Output

· output: weight Tensor

Interface

· read: read weight data, the type is specified by the model

· read_as_float: convert the weight data to float type for reading

· read_as_byte: read the weight data in byte type

· create: create weight op

· clone_bf16: convert the current weight to bf16 and create a weight Op

· clone_f16: convert the current weight to f16 and create a weight Op

Example

%1 = "top.Weight"() : () -> tensor<32x16x3x3xf32> loc("filter")

Copyright © SOPHGO 82

CHAPTER 14

Accuracy Validation

14.1 Introduction

14.1.1 Objects

The accuracy validation in TPU-MLIR is mainly for the mlir model, fp32 uses the mlir model
of the top layer while the int8 symmetric and asymmetric quantization uses the mlir model
of the tpu layer.

14.1.2 Metrics

Currently, the validation is mainly used for classification and object detection networks. The
metrics for classification networks are Top-1 and Top-5 accuracy, while the object detec-
tion networks use 12 metrics of COCO, as shown below. Generally, we record the Average

83

CHAPTER 14. ACCURACY VALIDATION

Precision when IoU=0.5 (i.e., PASCAL VOC metric).

AveragePrecision(AP) :

AP % AP at IoU=.50:.05:.95 (primary challenge metric)

AP IoU = .50 % AP at IoU=.50 (PASCAL VOC metric)

AP IoU = .75 % AP at IoU=.75 (strict metric)
APAcrossScales :

AP small % AP for small objects: area < 322

APmedium % AP for medium objects: 322 < area < 962

AP large % AP for large objects: area > 962

AverageRecall(AR) :

ARmax=1 % AR given 1 detection per image

ARmax=10 % AR given 10 detections per image

ARmax=100 % AR given 100 detections per image
APAcrossScales :

AP small % AP for small objects: area < 322

APmedium % AP for medium objects: 322 < area < 962

AP large % AP for large objects: area > 962

14.1.3 Datasets

In addition, the dataset used for validation needs to be downloaded by yourself. Classification
networks use the validation set of ILSVRC2012 (50,000 images, https://www.image-net.org/
challenges/LSVRC/2012/). There are two ways to place the images in the dataset. One is
that there are 1000 subdirectories under the dataset directory, corresponding to 1000 classes,
and each class has 50 images. In this case, no additional label file is required. The other
way is that all images are in the same dataset directory, and there is an additional label file.
According to the sequence of images’ names, each line in the txt file uses a number from 1
to 1000 to indicate the class of each image.

Object detection networks use the COCO2017 validation set (5000 images, https://
cocodataset.org/#download). All images are under the same dataset directory. The cor-
responding json label file needs to be downloaded as well.

Copyright © SOPHGO 84

https://www.image-net.org/challenges/LSVRC/2012/
https://www.image-net.org/challenges/LSVRC/2012/
https://cocodataset.org/#download
https://cocodataset.org/#download

CHAPTER 14. ACCURACY VALIDATION

14.2 Validation Interface

TPU-MLIR provides the command for accuracy validation:

$ model_eval.py \
--model_file mobilenet_v2.mlir \
--count 50 \
--dataset_type imagenet \
--postprocess_type topx \
--dataset datasets/ILSVRC2012_img_val_with_subdir

The supported parameters are shown below:

Table 14.1: Function of model_eval.py parameters

Name Required? Explanation

model_file Y Model file
dataset N Directory of dataset
dataset_type N Dataset type. Currently mainly supports imagenet,

coco. The default is imagenet
postprocess_type Y Metric. Currently supports topx and coco_mAP
label_file N txt label file, which may be needed when validating

the accuracy of classification networks
coco_annotation N json label file, required when validating object detec-

tion networks
count N The number of images used for validation. The default

is to use the entire dataset.

14.3 Validation Example

In this section, mobilenet_v2 and yolov5s are used as the representative of the classification
network and the object detection network for accuracy validation.

14.3.1 mobilenet_v2

1. Dataset Downloading

Download the ILSVRC2012 validation set to the datasets/ILSVRC2012_img-
_val_with_subdir directory. Images of the dataset are placed in subdirectories, so
no additional label files are required.

2. Model Conversion

Use the model_transform.py interface to convert the original model to the
mobilenet_v2.mlir model, and obtain mobilenet_v2_cali_table through the
run_calibration.py interface. Please refer to the “User Interface” chapter for

Copyright © SOPHGO 85

CHAPTER 14. ACCURACY VALIDATION

specific usage. The INT8 model of the tpu layer is obtained through the com-
mand below. After running the command, an intermediate file named mo-
bilenet_v2_bm1684x_int8_sym_tpu.mlir will be generated. We will use this inter-
mediate file to validate the accuracy of the INT8 symmetric quantized model:

INT8 Sym Model
$ model_deploy.py \
--mlir mobilenet_v2.mlir \
--quantize INT8 \
--calibration_table mobilenet_v2_cali_table \
--processor bm1684x \
--test_input mobilenet_v2_in_f32.npz \
--test_reference mobilenet_v2_top_outputs.npz \
--tolerance 0.95,0.69 \
--model mobilenet_v2_int8.bmodel

3. Accuracy Validation

Use the model_eval.py interface to validate:

F32 model validation
$ model_eval.py \
--model_file mobilenet_v2.mlir \
--count 50000 \
--dataset_type imagenet \
--postprocess_type topx \
--dataset datasets/ILSVRC2012_img_val_with_subdir

INT8 sym model validation
$ model_eval.py \
--model_file mobilenet_v2_bm1684x_int8_sym_tpu.mlir \
--count 50000 \
--dataset_type imagenet \
--postprocess_type topx \
--dataset datasets/ILSVRC2012_img_val_with_subdir

The accuracy validation results of the F32 model and the INT8 symmetric quantization model
are as follows:

mobilenet_v2.mlir validation result
2022/11/08 01:30:29 - INFO : idx:50000, top1:0.710, top5:0.899
INFO:root:idx:50000, top1:0.710, top5:0.899

mobilenet_v2_bm1684x_int8_sym_tpu.mlir validation result
2022/11/08 05:43:27 - INFO : idx:50000, top1:0.702, top5:0.895
INFO:root:idx:50000, top1:0.702, top5:0.895

Copyright © SOPHGO 86

CHAPTER 14. ACCURACY VALIDATION

14.3.2 yolov5s

1. Dataset Downloading

Download the COCO2017 validation set to the datasets/val2017 directory, which con-
tains 5,000 images for validation. The corresponding label file instances_val2017.json
is downloaded to the datasets directory.

2. Model Conversion

The conversion process is similar to mobilenet_v2.

3. Accuracy Validation

Use the model_eval.py interface to validate:

F32 model validation
$ model_eval.py \
--model_file yolov5s.mlir \
--count 5000 \
--dataset_type coco \
--postprocess_type coco_mAP \
--coco_annotation datasets/instances_val2017.json \
--dataset datasets/val2017

INT8 sym model validation
$ model_eval.py \
--model_file yolov5s_bm1684x_int8_sym_tpu.mlir \
--count 5000 \
--dataset_type coco \
--postprocess_type coco_mAP \
--coco_annotation datasets/instances_val2017.json \
--dataset datasets/val2017

The accuracy validation results of the F32 model and the INT8 symmetric quantization model
are as follows:

yolov5s.mlir validation result
Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.369
Average Precision (AP) @[IoU=0.50 | area= all | maxDets=100] = 0.561
Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 0.393
Average Precision (AP) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.217
Average Precision (AP) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.422
Average Precision (AP) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.470
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 1] = 0.300
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 10] = 0.502
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.542
Average Recall (AR) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.359
Average Recall (AR) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.602
Average Recall (AR) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.670

yolov5s_bm1684x_int8_sym_tpu.mlir validation result
Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.337

(continues on next page)

Copyright © SOPHGO 87

CHAPTER 14. ACCURACY VALIDATION

(continued from previous page)

Average Precision (AP) @[IoU=0.50 | area= all | maxDets=100] = 0.544
Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 0.365
Average Precision (AP) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.196
Average Precision (AP) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.382
Average Precision (AP) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.432
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 1] = 0.281
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 10] = 0.473
Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.514
Average Recall (AR) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.337
Average Recall (AR) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.566
Average Recall (AR) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.636

Copyright © SOPHGO 88

CHAPTER 15

quantzation aware traing

15.1 Basic Principles

Compared with the precision loss caused by post-training quantization because it is not the
global optimal, QAT quantization perception training can achieve the global optimal based
on loss optimization and reduce the quantization precision loss as far as possible. The basic
principle is as follows:In fp32 model training, weight and activation errors caused by inference
quantization are introduced in advance, and task loss is used to optimize learnable weight
and quantized scale and zp values on the training set. Even under the influence of this
quantization error, task loss can reach relatively low loss value through learning.In this way,
when the real inference deployment of quantization later, because the error introduced by
quantization has already been well adapted in the training, as long as the inference and the
calculation of training can be guaranteed to be completely aligned, theoretically, there will be
no precision loss in the inference quantization.

15.2 tpu-mlir QAT implementation scheme and characteristics

15.2.1 Main body flow

During user training, model QAT quantization API is called to modify the training model:In
reasoning, after op fusion, a pseudo-quantization node is inserted before the input (including
weight and bias) of the op that needs to be quantized (the quantization parameters of this
node can be configured, such as per-chan/layer, symmetry or not, number of quantization bits,
etc.), and then the user uses the modified model for normal training process. After completing
a few rounds of training,Call the transformation deployment API interface to convert the

89

CHAPTER 15. QUANTZATION AWARE TRAING

trained model into the FP32-weighted onnx model, extract the parameters from the pseudo-
quantization node and export them to the quantization parameter text file. Finally, input the
optimized onnx model and the quantization parameter file into the tpu-mlir tool chain, and
convert and deploy according to the post-training quantization method mentioned above.

15.2.2 Features of the Scheme

Feature 1:Based on pytorch;QAT is an additional finetune part of the training pipeline, and
only deep integration with the training environment can facilitate users to use various sce-
narios. Considering pytorch has the most extensive usage rate, the current scheme is based
on pytorch only. If qat supports other frameworks in the future, the scheme will be very
different.Its trace and module replacement mechanisms are deeply dependent on the support
of the native training platform.

Feature 2:Users basically have no sense;Different from earlier schemes that require deep man-
ual intervention in model transformation, this scheme based on pytorch fx can automatically
complete model trace, pseudo-quantization node insertion, custom module replacement and
other operations. In most cases, users can complete model transformation with one click using
the default configuration.

Feature 3:This scheme is based on Sensetime’s open source mqbench qat training framework,
which has a certain community foundation and is convenient for industry and academia to
evaluate reasoning performance and accuracy on our tpu.

15.3 Installation Method

15.3.1 Install from source

1、Run the command to get the latest code on github:git clone
https://github.com/sophgo/MQBench。

2、Execute after entering the MQBench directory:

pip install -r requirements.txt #Note: torch version 1.10.0 is currently required
python setup.py install

3、If python -c ‘import mqbench’ does not return any error, the installation is correct. If
the installation is incorrect, run pip uninstall mqbench and try again.

Copyright © SOPHGO 90

CHAPTER 15. QUANTZATION AWARE TRAING

15.3.2 Installing the wheel file

Download the python whl package from https://MQBench-1.0.0-py3-none-any.whl and run
pip3 install MQBench-1.0.0-py3-none-any.whl to install it directly.

15.4 Basic Steps

15.4.1 Step 1: Interface import and model prepare

Add the following python module import interface to the training file:

#Initializing Interface
from mqbench.prepare_by_platform import prepare_by_platform, BackendType
#Calibrate and quantify switches
from mqbench.utils.state import enable_calibration, enable_quantization
#Transform Deployment interface
from mqbench.convert_deploy import convert_deploy
#Use the pre-trained resnet18 model in torchvision model zoo
model = torchvision.models.__dict__["resnet18"](pretrained=True)
Backend = BackendType.sophgo_tpu
#1.trace model and then add quantization nodes in a specific way based on the requirements of�
↪→sophgo_tpu hardware
model_quantized = prepare_by_platform(model, Backend)

When sophgo_tpu backend is selected on the above interface, the third parameter pre-
pare_custom_config_dict of this interface is not configured by default. In this case, the
default quantization configuration is shown as the following figure:

In the above figure, items in the dict behind sophgo_tpu in order of top to bottom meaning
are:

1、The weight quantization scheme is: per-chan symmetric 8bit quantization, the scale coef-
ficient is not power-of-2, but arbitrary

2、The activation quantization scheme is per-layer symmetric 8bit quantization

3/4、The weights and activation pseudo-quantization schemes are: LearnableFakeQuantize,
namely LSQ algorithm

5/6、The dynamic range statistics and scale calculation scheme of weights are as follows:
MinMaxObserver, and the activation is EMAMinMaxObserver with moving average

Copyright © SOPHGO 91

https://MQBench-1.0.0-py3-none-any.whl

CHAPTER 15. QUANTZATION AWARE TRAING

15.4.2 Step 2: Calibration and quantization training

#1.Turn on the calibration switch to allow the pytorch observer object to collect the activation�
↪→distribution and calculate the initial scale and zp when reasoning on the model
enable_calibration(model_quantized)
iterations of calibration
for i, (images, _) in enumerate(cali_loader):
model_quantized(images) #All you need is forward reasoning

#3.After the pseudo-quantization switch is turned on, the quantization error will be introduced�
↪→by invoking the QuantizeBase subobject to conduct the pseudo-quantization operation when�
↪→reasoning on the model
enable_quantization(model_quantized)
iterations of training
for i, (images, target) in enumerate(train_loader):
#Forward reasoning and calculation loss
output = model_quantized(images)
loss = criterion(output, target)
#Back to back propagation gradient
loss.backward()
#Update weights and pseudo-quantization parameters
optimizer.step()

15.4.3 Step 3: Export tuned fp32 model

#Here the batch-size can be adjusted according to the need, do not have to be consistent with the�
↪→training batch-size
input_shape={‘data’: [4, 3, 224, 224]}
#4. Before export, the conv+bn layer is fused (conv+bn is true fusion when train is used in the�
↪→front), and the parameters in the pseudo-quantization node are saved to the parameter file, and�
↪→then removed。
convert_deploy(model_quantized, backend, input_shape)

15.4.4 Step 4: Initiate the training

Set reasonable training hyperparameters. The suggestions are as follows:
–epochs=1:About 1~3 can be；

–lr=1e-4:The learning rate should be the learning rate when fp32 converges, or even
lower；

–optim=sgd:The default is sgd；

Copyright © SOPHGO 92

CHAPTER 15. QUANTZATION AWARE TRAING

15.4.5 Step 5: Transform deployment

The transformation deployment to sophg-tpu hardware was completed using the
model_transform.py and model_deploy.py scripts of tpu-mlir；

15.5 Use Examples-resnet18

Run example/imagenet_example/main.py to qat train resent18 as follows:

python3 imagenet_example/main.py
--arch=resnet18
--batch-size=192
--epochs=1
--lr=1e-4
--cuda=0
--pretrained
--backend=sophgo_tpu
--optim=sgd
--deploy_batch_size=10
--train_data=/data/imagenet/for_train_val/
--val_data=/data/imagenet/for_train_val/
--output_path=/workspace/classify_models

The command output log above contains the following(Original onnx model ac-
curacy) accuracy information of the original model (it can be compared with
the accuracy on the official webpage to confirm the correct training environ-
ment, such as the official nominal name:Acc@1 69.76 Acc@5 89.08,The link
is:https://pytorch.apachecn.org/#/docs/1.0/torchvision_models）:

Fig. 15.1: Original onnx model accuracy

After completing the qat training, the eval accuracy of the running band quantization node,
theoretically the int8 accuracy of the tpu-mlir should be exactly aligned with this, as shown
in the figure(resnet18 qat training accuracy) below:

Fig. 15.2: resnet18 qat training accuracy

The final output directory is as follows(resnet18 qat training output model directory):

Copyright © SOPHGO 93

CHAPTER 15. QUANTZATION AWARE TRAING

Fig. 15.3: resnet18 qat training output model directory

The one with _ori in the figure above is the original pt of pytorch model zoo and the trans-
ferred onnx file. This resnet18_ori.onnx is quantified by PTQ with the tpu-mlir tool chain,
and its symmetry and asymmetry quantization accuracy are measured as the baseline and
resnet18_mqmoble_cali_table_from_mqbench_sophgo_tpu is the exported quantization
parameter file with the following contents(resnet18 Sample qat quantization parameter table):

Fig. 15.4: resnet18 Sample qat quantization parameter table

a、In the red box of the first row in the figure above, work_mode is QAT_all_int8, in-
dicating int8 quantization of the whole network. It can be selected from [QAT_all_int8,
QAT_mix_prec], and quantization parameters such as symmetry and asymmetry will also
be included。

b、In the figure above, 472_Relu_weight represents the QAT-tuned scale and zp parameters
of conv weight. The first 64 represents the scale followed by 64, and the second 64 represents
the zp followed by 64.tpu-mlir imports the weight_scale attribute of the top weight. If this
attribute exists in the int8 lowering time, it is directly used. When it does not, it is recalculated
according to the maximum lowering value。

c、In the case of asymmetric quantization, min and max above are calculated according to
the scale, zp, qmin and qmax tuned by the activated qat. threshold is calculated according
to the activated scale in the case of symmetric quantization, and both are not valid at the
same time。

Copyright © SOPHGO 94

CHAPTER 15. QUANTZATION AWARE TRAING

15.6 Tpu-mlir QAT test environment

15.6.1 Adding a cfg File

Go to the tpu-mlir/regression/eval directory and add {model_name}_qat.cfg to the
qat_config subdirectory. For example, the contents of the resnet18_qat.cfg file are as follows:

dataset=${REGRESSION_PATH}/dataset/ILSVRC2012
test_input=${REGRESSION_PATH}/image/cat.jpg
input_shapes=[[1,3,224,224]] #Modified according to the actual shape
#The following is the image preprocessing parameters, fill in according to the actual situation
resize_dims=256,256
mean=123.675,116.28,103.53
scale=0.0171,0.0175,0.0174
pixel_format=rgb
int8_sym_tolerance=0.97,0.80
int8_asym_tolerance=0.98,0.80
debug_cmd=use_pil_resize

You can also add {model_name}_qat_ori.cfg file: Quantify the original pytorch model as
baseline, which can be exactly the same as {model_name}_qat.cfg above；

15.6.2 Modify and execute run_eval.py

In the following figure, fill in more command strings of different precision evaluation meth-
ods in postprocess_type_all, such as the existing imagenet classification and coco detection
precision calculation strings in the figure;In the following figure, model_list_all fills in the
mapping of the model name to the parameter, for example:resnet18_qat’s [0,0], where the
first parameter represents the first command string in postprocess_type_all, and the second
parameter represents the first directory in qat_model_path (separated by commas):

After configuring the postprocess_type_all and model_list_all arrays as needed, execute the
following run_eval.py command:

python3 run_eval.py
--qat_eval #In qat validation mode, the default is to perform regular model accuracy�

↪→testing using the configuration in the tpu-mlir/regression/config
--fast_test #Quick test before the official test (only test the accuracy of 30 graphs) to�

↪→confirm that all cases can run
(continues on next page)

Copyright © SOPHGO 95

CHAPTER 15. QUANTZATION AWARE TRAING

(continued from previous page)

--pool_size 20 #By default, 10 processes run. If the machine has many idle resources, you�
↪→can configure more
--batch_size 10 #qat exports the batch-size of the model. The default is 1
--qat_model_path '/workspace/classify_models/,/workspace/yolov5/qat_models' #Directory�

↪→of the qat model,For example, the value of model_list_all[' resnet18_qat '][1] is 0, indicating�
↪→the first directory address of the model target in the qat_model_path:/workspace/classify_
↪→models/
--debug_cmd use_pil_resize #Use pil resize

After or during the test, view the model_eval script output log file start-
ing with log_ in the subdirectory named {model_name}_qat,For example,
log_resnet18_qat.mlir indicates the log of testing resnet18_qat.mlir in the di-
rectory.log_resnet18_qat_bm1684x_tpu_int8_sym.mlir Indicates the test log of
resnet18_qat_bm1684x_tpu_int8_sym.mlir in this directory.

15.7 Use Examples-yolov5s

Similar to resnet18, run the following command in example/yolov5_example to start qat
training:

python3 train.py
--cfg=yolov5s.yaml
--weights=yolov5s.pt
--data=coco.yaml
--epochs=5
--output_path=/workspace/yolov5/qat_models
--batch-size=8
--quantize

After the training is completed, the same test and transformation deployment process as
resnet18 before can be adopted。

Copyright © SOPHGO 96

CHAPTER 16

TpuLang Interface

This chapter mainly introduces the process of converting models using TpuLang.

16.1 Main Work

TpuLang provides mlir external interface functions. Users can directly build their own net-
work through Tpulang, and convert the model to the Top layer (hardware-independent layer)
mlir model (the Canonicalize part is not included, so the generated file name is “*_ori-
gin.mlir”). This process will create and add operators (Op) one by one according to the
input interface functions. Finally, a mlir model file and a corresponding weight npz file will
be generated.

16.2 Work Process

1. Initialization: Set up the platform and create the graph.

2. Add OPs: cyclically add OPs of the model

· The input parameters are converted to dict format;

· Inference output shape, and create output tensor;

· Set the quantization parameters of the tensor (scale, zero_point);

· Create op(op_type, inputs, outputs, params) and insert it into the graph.

3. Set the input and output tensor of the model. Get all model information.

4. Initialize TpuLangConverter (initMLIRImporter)

97

CHAPTER 16. TPULANG INTERFACE

5. generate_mlir

· Create the input op, the nodes op in the middle of the model and the return op in
turn, and add them to the mlir text (if the op has weight, an additional weight op
will be created)

6. Output

· Convert the generated text to str and save it as “.mlir” file

· Save model weights (tensors) as “.npz” files

7. End: Release the graph.

The workflow of TpuLang conversion is shown in the figure (TpuLang conversion process)。

Fig. 16.1: TpuLang conversion process

Supplementary Note:

· The op interface requires:

– The input tensor of the op (i.e., the output tensor of the previous operator or
the graph input tensor and coeff);

– According to the parameters extracted by the interface, the output_shape is
obtained by inference (i.e., shape_inference is required);

– attrs extracted from the interface. Attrs will be set by MLIRImporter as
attributes corresponding to the ones defined in TopOps.td;

– If the interface includes quantization parameters (i.e., scale and zero_point),
the tensor corresponding to this parameter needs to set (or check) the quanti-
zation parameters.

– Return the output tensor(tensors) of the op.

· After all operators are inserted into the graph and the input/output tensors of the
graph are set, the conversion to mlir text will start. This part is implemented by
TpuLangConverter.

· The conversion process of TpuLang Converter is the same as onnx front-end part.
Please refer to (Front-end Conversion).

Copyright © SOPHGO 98

CHAPTER 16. TPULANG INTERFACE

16.3 Operator Conversion Example

This section takes the Conv operator as an example to convert a single Conv operator model
to Top mlir. The original model definition is shown in the figure (Single Conv Model)

Fig. 16.2: Single Conv Model

The conversion process:

1. Interface definition

The conv_v2 interface is defined as follows:

def conv_v2(tensor_i,
weight,
bias = None,
stride = None,
dilation = None,
pad = None,
group = 1,
input_zp = None,
weight_zp = None,
out_dtype = None,
out_name = None):

pass

Parameter Description

· tensor_i: Tensor type, indicating the input Tensor with 4-dimensional NCHW
format.

· weight: Tensor type, representing the convolution kernel Tensor with 4-
dimensional [oc, ic, kh, kw] format. oc indicates the number of output channels, ic
indicates the number of input channels, kh is kernel_h, and kw is kernel_w.

· bias: Tensor type, indicating the bias Tensor. There is no bias when it is None.
Otherwise, the shape is required to be [1, oc, 1, 1].

Copyright © SOPHGO 99

CHAPTER 16. TPULANG INTERFACE

· dilation: List[int], indicating the size of holes. None means dilation equals [1,1].
Otherwise, the length is required to be 2 and the order of List is [length, width].

· pad: List[int], indicating the padding size, if it is None, no padding is applied.
Otherwise, the length is required to be 4. The order in the List is [Up, Down, Left,
Right].

· stride: List[int], indicating the step size, [1,1] when it is None. Otherwise, the
length is required to be 2 and the order in the List is [length, width].

· groups: int type, indicating the number of groups in the convolutional layer. If
ic=oc=groups, the convolution is depthwise conv

· input_zp: List[int] type or int type, indicating the input offset. If None, input_zp
equals 0. Otherwise, the length of List is required to be ic.

· weight_zp: List[int] type or int type, indicating the convolution kernel offset. If
None, weight_zp equals 0. Otherwise, the length of list is required to be ic, where
ic represents the number of input channels.

· out_dtype: string type or None, indicating the type of the output Tensor. When
the input tensor type is float16/float32, None indicates that the output tensor
type is consistent with the input. Otherwise, None means int32. Value range:
/int32/uint32/float32/float16.

· out_name: string type or None, indicating the name of the output Tensor. When
it is None, the name will be automatically generated.

Define the Top.Conv operator in TopOps.td, the operator definition is as shown
in the figure (Conv Operator Definition)

1. Build Graph

· Initialize the model: create an empty Graph.

· Model input: Create input tensor x given shape and data type. A tensor name can also
be specified here.

· conv_v2 interface:

– Call the conv_v2 interface with specified input tensor and input parameters.

– Inference output shape, and generate output tensor

def _shape_inference():
kh_ext = dilation[0] * (weight.shape[2] - 1) + 1
kw_ext = dilation[1] * (weight.shape[3] - 1) + 1
oh = (input.shape[2] + pad[0] + pad[1] - kh_ext) // stride[0] + 1
ow = (input.shape[3] + pad[2] + pad[3] - kw_ext) // stride[1] + 1
return [input.shape[0], weight.shape[0], oh, ow]
output = Tensor(_shape_inference(), dtype=out_dtype, name=out_name)

– attributes, pack the input parameters into attributes defined by (Conv Operator
Definition)

Copyright © SOPHGO 100

CHAPTER 16. TPULANG INTERFACE

Fig. 16.3: Conv Operator Definition

Copyright © SOPHGO 101

CHAPTER 16. TPULANG INTERFACE

attr = {
"kernel_shape": ArrayAttr(weight.shape[2:]),
"strides": ArrayAttr(stride),
"dilations": ArrayAttr(dilation),
"pads": ArrayAttr(pad),
"do_relu": Attr(False, "bool"),
"group": Attr(group)
}

– Insert conv op. Insert Top.ConvOp into Graph.

– return the output tensor

· Set the input of Graph and output tensors.

3. init_MLIRImporter:

Get the corresponding input_shape and output_shape from shapes according to
input_names and output_names. Add model_name, and generate the initial mlir
text MLIRImporter.mlir_module, as shown in the figure (Initial mlir text).

Fig. 16.4: Initial Mlir Text

3. generate_mlir

· Build input op, the generated Top.inputOp will be inserted into MLIRIm-
porter.mlir_module.

· Call Operation.create to create Top.ConvOp, and the parameters required by the
create function are:

– Input op: According to the interface definition, the inputs of the Conv
operator include input, weight and bias. The inputOp has been cre-
ated, and the op of weight and bias is created through getWeightOp().

– output_shape: get output shape from the output tensor stored in the
Operator.

– Attributes: Get attributes from Operator, and convert attributes to
Attributes that can be recognized by MLIRImporter

After Top.ConvOp is created, it will be inserted into the mlir text

· Get the corresponding op from operands according to output_names, create re-
turn_op and insert it into the mlir text. By this point, the generated mlir text is
as shown (Full Mlir Text).

4. Output

Copyright © SOPHGO 102

CHAPTER 16. TPULANG INTERFACE

Fig. 16.5: Full Mlir Text

Save the mlir text as Conv_origin.mlir and the weights in tensors as
Conv_TOP_F32_all_weight.npz.

Copyright © SOPHGO 103

CHAPTER 17

Custom Operators

17.1 Overview

TPU-MLIR already includes a rich library of operators that can fulfill the needs of most
neural network models. However, in certain scenarios, there may be a requirement for users
to define their own custom operators to perform computations on tensors. This need arises
when:

1. TPU-MLIR does not support a specific operator, and it cannot be achieved by combining
existing operators.

2. The operator is private.

3. Combining multiple operator APIs does not yield optimal computational performance,
and custom operations at the TPU-Kernel level can improve execution efficiency.

The functionality of custom operators allows users to freely use the interfaces in TPU-Kernel to
compute tensors on the TPU, and encapsulate this computation process as backend operators
(refer to the TPU-KERNEL Technical Reference Manual for backend operator development).
The backend operator calculation involves operations related to the global layer and local
layer:

a. The operator must implement the global layer. The input and output data of the global
layer are stored in DDR. The data needs to be transferred from global memory to local
memory for execution and then transferred back to global memory. The advantage
is that local memory can be used flexibly, but it has the disadvantage of generating
a considerable number of GDMA transfers, resulting in lower the Tensor Competing
Processor utilization.

b. The operator can optionally implement the local layer. The input and output data of
the local layer are stored in local memory. It can be combined with other layers for

104

CHAPTER 17. CUSTOM OPERATORS

layer group optimization, avoiding the need to transfer data to and from global memory
during the calculation of this layer. The advantage is that it saves GDMA transfers and
achieves higher computational efficiency. However, it is more complex to implement.
The local memory needs to be allocated in advance during model deployment, limiting
its usage and making it impractical for certain operators.

The frontend can build models containing custom operators using tpulang or Caffe, and
finally deploy the models through the model conversion interface of TPU-MLIR. This chapter
primarily introduces the process of using custom operators in the TPU-MLIR release package.

17.2 Custom Operator Addition Process

17.2.1 Add TpuLang Custom Operator

1. Load TPU-MLIR

The following operations need to be in a Docker container. For the use of Docker, please refer
to Setup Docker Container.

1 $ tar zxf tpu-mlir_xxxx.tar.gz
2 $ source tpu-mlir_xxxx/envsetup.sh

envsetup.sh adds the following environment variables:

Table 17.1: Environment variables

Name Value Explanation

TPUC_ROOT tpu-mlir_xxx The location of the SDK pack-
age after decompression

MODEL_ZOO_PATH ${TPUC_ROOT}/../model-
zoo

The location of the model-zoo
folder, at the same level as the
SDK

REGRESSION_PATH ${TPUC_ROOT}/regression The location of the regression
folder

envsetup.sh modifies the environment variables as follows:

1 export PATH=${TPUC_ROOT}/bin:$PATH
2 export PATH=${TPUC_ROOT}/python/tools:$PATH
3 export PATH=${TPUC_ROOT}/python/utils:$PATH
4 export PATH=${TPUC_ROOT}/python/test:$PATH
5 export PATH=${TPUC_ROOT}/python/samples:$PATH
6 export PATH=${TPUC_ROOT}/customlayer/python:$PATH
7 export LD_LIBRARY_PATH=$TPUC_ROOT/lib:$LD_LIBRARY_PATH
8 export PYTHONPATH=${TPUC_ROOT}/python:$PYTHONPATH
9 export PYTHONPATH=${TPUC_ROOT}/customlayer/python:$PYTHONPATH

(continues on next page)

Copyright © SOPHGO 105

CHAPTER 17. CUSTOM OPERATORS

(continued from previous page)

10 export MODEL_ZOO_PATH=${TPUC_ROOT}/../model-zoo
11 export REGRESSION_PATH=${TPUC_ROOT}/regression

2. Develop backend operators based on TPU-Kernel

Assuming the current path is $TPUC_ROOT/customlayer, add the back-
end_{op_name}.h header file in the ./include directory to declare the cus-
tom operator functions for the global layer and local layer (void back-
end_{op_name}_global and void backend_{op_name}_local, respectively).
Then, add the backend_{op_name}.c file in the ./src directory and invoke the
TPU-Kernel interfaces to implement the corresponding functions.

3. Define the operator’s parameter structure and write the operator’s interface

a. Add the corresponding structure {op_name}_param_t in the ./in-
clude/backend_custom_param.h header file to receive parameters from the
frontend of toolchain, based on the parameters required by the operator.

b. Add the api_{op_name}.h header file in the ./include directory
to declare the interfaces for the custom operator functions (void
api_{op_name}_global and void api_{op_name}_local). Then, add the
api_{op_name}.c file in the ./src directory and implement the correspond-
ing interfaces.

c. Additionally, users need to implement corresponding functions to parse the
parameters passed from the frontend of toolchain based on the parameters
required by the operator. Parameters are passed through a pointer to a
custom_param_t array, where each custom_param_t structure contains
information about a parameter, and the parameter value is stored in the
corresponding member variables in custom_param_t (which includes inte-
ger, floating-point number, integer array, and floating-point array variables).
The order of the parameters is the same as the order in which the user
provides them when calling the TpuLang interface. The definition of the
custom_param_t is as follows:

typedef struct {
int int_t;
float float_t;
// max size of int and float array is set as 16
int int_arr_t[16];
float float_arr_t[16];
} custom_param_t;

4. Define the backend interface

In ./src/backend_custom_api.cpp, build the backend interface using macro defi-
nitions. This interface will be called during Codegen in the frontend of toolchain.
The format is as follows:

Copyright © SOPHGO 106

CHAPTER 17. CUSTOM OPERATORS

IMPL_CUSTOM_API_GLB({op_name}, {op_name}_param_t)

IMPL_CUSTOM_API_LOC({op_name}, {op_name}_param_t)

5. Compile and install the dynamic library

By running the build.sh script in $TPUC_ROOT/customlayer, the compila-
tion of the custom operator will be completed. It will generate the back-
end_custom_api.so dynamic library and install it in $TPUC_ROOT/lib.

6. Invoke TpuLang to build the model

Refer to the TPULang Interface section for instructions on how to use TpuLang.

TpuLang provides the TpuLang.custom interface to build custom operators in the
frontend of toolchain (ensure that the op_name part matches the name of the
backend operator):

TpuLang.custom(tensors_in: list,
shape_func,
op_name: str,
out_dtypes: list,
out_names: list = None,
params: dict = None)

'''
The custom op
Arguments:
tensors_in: list of input tensors (including weight tensors)
shape_func: function for doing shape inference, taking tensors_in as the

parameter, return is the list of output tensors shape
op_name: name of the custom operator,
out_dtypes: list of outputs' data type
out_name: list of output names
params: parameters of the custom op

Return:
tensors_out: list of output tensors

'''

17.2.2 Add Caffe Custom Operator

Steps 1-5 are the same as in Add TpuLang Custom Operator section, and will not be repeated
here.

6. Defining custom operators in Caffe

To define custom operators in Caffe, you need to define a class in the file
$TPUC_ROOT/customlayer/python/my_layer.py that inherits from caffe.Layer
and override the setup, reshape, forward, and backward functions as needed.

7. Implementing the frontend conversion function

Copyright © SOPHGO 107

CHAPTER 17. CUSTOM OPERATORS

The type of custom operators implemented in python is “Python”, so you need
to implement a corresponding conversion function of MyCaffeConverter class de-
fined in the file $TPUC_ROOT/customlayer/python/my_converter.py, based on
the definition in step 6.

After the definition, you can call my_converter.py interface for Top MLIR con-
version:

my_converter.py \
--model_name # the model name \
--model_def # .prototxt file \
--model_data # .caffemodel file \
--input_shapes # list of input shapes (e.g., [[1,2,3],[3,4,5]]) \
--mlir # output mlir file

17.3 Custom Operator Example

This section assumes that the tpu-mlir release package has been loaded.

17.3.1 Example of TpuLang

This subsection provides a sample of swapchanel operator implementation and application
through TpuLang interface.

1. Backend Operator Implementation

The following is the declaration in the header file

${TPUC_ROOT}/customlayer/include/backend_swapchannel.h:

#ifndef BACKEND_SWAPCHANNEL_H_
#define BACKEND_SWAPCHANNEL_H_

#include "tpu_kernel.h"

#ifdef __cplusplus
extern "C" {
#endif

void backend_swapchannel_global(
global_addr_t input_global_addr,
global_addr_t output_global_addr,
const int *shape,
const int *order,
data_type_t dtype);

#ifdef __cplusplus
}
#endif

(continues on next page)

Copyright © SOPHGO 108

CHAPTER 17. CUSTOM OPERATORS

(continued from previous page)

#endif

The code of ${TPUC_ROOT}/customlayer/src/backend_swapchannel.c:

#include "backend_swapchannel.h"
#include "common.h"

void backend_swapchannel_global(
global_addr_t input_global_addr,
global_addr_t output_global_addr,
const int *shape,
const int *order,
data_type_t dtype)

{
dim4 channel_shape = {.n = shape[0], .c = 1, .h = shape[2], .w = shape[3]};
int data_size = tpu_data_type_size(dtype);
int offset = channel_shape.w * channel_shape.h * data_size;
for (int i = 0; i < 3; i++) {
tpu_gdma_cpy_S2S(
output_global_addr + i * offset,
input_global_addr + order[i] * offset,
&channel_shape,
NULL,
NULL,
dtype);

}
}

2. Operator Parameter Structure and Implementation of the Operator Interface

The definition of swapchannel_param_t in

${TPUC_ROOT}/customlayer/include/backend_custom_param.h is as follows:

typedef struct swapchannel_param {
int order[3];
} swapchannel_param_t;

The following is the declaration in the header file

${TPUC_ROOT}/customlayer/include/api_swapchannel.h:

#pragma once
#include "api_common.h"
#include "backend_custom_param.h"

#ifdef __cplusplus
extern "C" {
#endif

(continues on next page)

Copyright © SOPHGO 109

CHAPTER 17. CUSTOM OPERATORS

(continued from previous page)

void api_swapchannel_global(
global_tensor_spec_t *input,
global_tensor_spec_t *output,
custom_param_t *param);

#ifdef __cplusplus
}
#endif

The code of ${TPUC_ROOT}/customlayer/src/api_swapchannel.c:

#include "tpu_utils.h"
#include "api_swapchannel.h"
#include "backend_swapchannel.h"

// parse param function
swapchannel_param_t parsParam(custom_param_t* param) {
swapchannel_param_t sc_param = {0};
for (int i = 0; i < 3; i++) {
sc_param.order[i] = param[0].int_arr_t[i];

}
return sc_param;

}

// global api function
void api_swapchannel_global(
global_tensor_spec_t *input,
global_tensor_spec_t *output,
custom_param_t *param)

{
swapchannel_param_t sc_param = parsParam(param);

backend_swapchannel_global(
input->addr,
output->addr,
input->shape,
sc_param.order,
tpu_type_convert(input->dtype));

}

3. Backend Interface

The code of ${TPUC_ROOT}/customlayer/src/backend_custom_api.cpp:

#include "backend_helper.h"
#include "common_def.h"
#include "api_common.h"

// 1. include head file of api function
#include "api_swapchannel.h"

(continues on next page)

Copyright © SOPHGO 110

CHAPTER 17. CUSTOM OPERATORS

(continued from previous page)

// 2. global backend api functions
IMPL_CUSTOM_API_GLB(swapchannel, swapchannel_param_t)

After completing the implementation of the backend interface, you can run
$TPUC_ROOT/customlayer/build.sh to compile and install the custom opera-
tor dynamic library.

4. TpuLang Interface Invocation

Here is an example of Python code that utilizes the TpuLang interface to build a
custom operator model:

import numpy as np
import transform.TpuLang as tpul

1. initialize tpulang
tpul.init("BM1684X", True)

2. prepare the input
dtype = "float32"
input_shape = [1, 3, 14, 14]
x_data = np.random.random(input_shape).astype(np.float32)
x = tpul.Tensor(dtype=dtype, shape=input_shape, data=x_data)

3. build model
def shape_func(tensors_in):
the shape inference function
return [tensors_in[0].shape]

out_names = ["out"]
params = {"order": [2, 1, 0]}

outs = tpul.custom(
tensors_in=[x],
shape_func=shape_func,
op_name should be consistent with the backend
op_name="swapchannel",
params=params,
out_dtypes=[dtype],
out_names=out_names)

4. compile to Top mlir file, the input will be saved in {top_mlir}_in_f32.
↪→npz
top_mlir = "tpulang_test_net"
tpul.compile(top_mlir, [x], outs, False, 2, has_custom=True)

By running the above code, you can obtain the Top MLIR file tpu-
lang_test_net.mlir. For the subsequent model deployment process, please refer
to the User Interface chapter.

Copyright © SOPHGO 111

CHAPTER 17. CUSTOM OPERATORS

17.3.2 Example of Caffe

This subsection provides application examples of custom operators absadd and ceiladd in
Caffe.

1. Backend operator and interface implementation

The implementation of absadd and ceiladd is similar to the swapchan-
nel operator and can be found in $TPUC_ROOT/customlayer/include and
$TPUC_ROOT/customlayer/src.

2. Defining Caffe custom operators

The definition of absadd and ceiladd in Caffe can be found in
$TPUC_ROOT/customlayer/python/my_layer.py as follows:

import caffe
import numpy as np

Define the custom layer
class AbsAdd(caffe.Layer):

def setup(self, bottom, top):
params = eval(self.param_str)
self.b_val = params['b_val']

def reshape(self, bottom, top):
top[0].reshape(*bottom[0].data.shape)

def forward(self, bottom, top):
top[0].data[...] = np.abs(np.copy(bottom[0].data)) + self.b_val

def backward(self, top, propagate_down, bottom):
pass

class CeilAdd(caffe.Layer):

def setup(self, bottom, top):
params = eval(self.param_str)
self.b_val = params['b_val']

def reshape(self, bottom, top):
top[0].reshape(*bottom[0].data.shape)

def forward(self, bottom, top):
top[0].data[...] = np.ceil(np.copy(bottom[0].data)) + self.b_val

def backward(self, top, propagate_down, bottom):
pass

The expression of corresponding operators in Caffe prototxt is as follows:

Copyright © SOPHGO 112

CHAPTER 17. CUSTOM OPERATORS

layer {
name: "myabsadd"
type: "Python"
bottom: "input0_bn"
top: "myabsadd"
python_param {
module: "my_layer"
layer: "AbsAdd"
param_str: "{ 'b_val': 1.2}"
}
}

layer {
name: "myceiladd"
type: "Python"
bottom: "input1_bn"
top: "myceiladd"
python_param {
module: "my_layer"
layer: "CeilAdd"
param_str: "{ 'b_val': 1.5}"
}
}

3. Implement operator front-end conversion functions

Define a convert_python_op function of the MyCaffeConverter class in
$TPUC_ROOT/customlayer/python/my_converter.py, the code is as follows:

def convert_python_op(self, layer):
assert (self.layerType(layer) == "Python")
in_op = self.getOperand(layer.bottom[0])
p = layer.python_param

dict_attr = dict(eval(p.param_str))
params = dict_attr_convert(dict_attr)

p.layer.lower() to keep the consistency with the backend op name
attrs = {"name": p.layer.lower(), "params": params, 'loc': self.get_loc(layer.top[0])}

The output shape compute based on reshape function in my_layer
out_shape = self.getShape(layer.top[0])
outs = top.CustomOp([self.mlir.get_tensor_type(out_shape)], [in_op],

**attrs,
ip=self.mlir.insert_point).output

add the op result to self.operands
self.addOperand(layer.top[0], outs[0])

4. Caffe front-end conversion

Complete the conversion of Caffe model in the $TPUC_ROOT/customlayer/test
directory (i.e., my_model.prototxt and my_model.caffemodel, which contain ab-

Copyright © SOPHGO 113

CHAPTER 17. CUSTOM OPERATORS

sadd and ceiladd operators) by calling the my_converter.py interface, the com-
mand is as follows:

my_converter.py \
--model_name caffe_test_net \
--model_def $TPUC_ROOT/customlayer/test/my_model.prototxt \
--model_data $TPUC_ROOT/customlayer/test/my_model.caffemodel \
--input_shapes [[1,3,14,14],[1,3,24,26]] \
--mlir caffe_test_net.mlir

So far, the Top MLIR file caffe_test_net.mlir has been obtained. For the subse-
quent model deployment process, please refer to the user interface chapter.

Copyright © SOPHGO 114

CHAPTER 18

Appendix.01: Migrating from NNTC to tpu-mlir

NNTC is using docker version sophgo/tpuc_dev:v2.1, for MLIR docker version reference and
environment initialization please refer to Environment Setup.

In the following, we will use yolov5s as an example to explain the similarities and differences
between nntc and mlir in terms of quantization, and for compiling floating-point models,
please refer to <TPU-MLIR_Quick_Start> Compile the ONNX model.

First, refer to the section Compile the ONNX model to prepare the yolov5s model.

18.1 ONNX to MLIR

To quantize a model in mlir, first convert the original model to a top-level mlir file, this step
can be compared to generating a fp32umodel in step-by-step quantization in nntc.

1. MLIR’s model conversion command

$ model_transform.py \
--model_name yolov5s \
--model_def ../yolov5s.onnx \
--input_shapes [[1,3,640,640]] \
--mean 0.0,0.0,0.0 \
---scale 0.0039216,0.0039216,0.0039216 \
--keep_aspect_ratio \
--pixel_format rgb \
--output_names 350,498,646 \
---test_input ./image/dog.jpg \
---test_result yolov5s_top_outputs.npz \
--mlir yolov5s.mlir

115

CHAPTER 18. APPENDIX.01: MIGRATING FROM NNTC TO TPU-MLIR

TPU-MLIR can directly encode image preprocessing into the converted MLIR file.

2. Model transformation commands for NNTC

$ python3 -m ufw.tools.on_to_umodel \
-m ../yolov5s.onnx \
-s '(1,3,640,640)' \
-d 'compilation' \
--cmp

When importing a model with NNTC, you cannot specify the preprocessing method.

18.2 Make a quantization calibration table

If you want to generate a fixed-point model, you need a quantization tool to quan-
tize the model, nntc uses calibration_use_pb for step-by-step quantization, and mlir uses
run_calibration.py for step-by-step quantization.

The number of input data is about 100~1000 depending on the situation, using the existing
100 images from COCO2017 as an example, perform calibration.

To use stepwise quantization in nntc, you need to make your own mdb quantization dataset
using the image quantization dataset, and modify fp32_protoxt to point the data input to
the lmdb file.

Note: For the NNTC quantization dataset, please refer to the “Model Quantization” chap-
ter in the <TPU-NNTC Development Reference Manual>, and note that the lmdb dataset is
not compatible with TPU-MLIR. TPU-MLIR can directly use raw images as input for quan-
tization tools. If it is voice, text or other non-image data, it needs to be converted to npz
file.

1. MLIR Quantization Model

$ run_calibration.py yolov5s.mlir \
--dataset ../COCO2017 \
--input_num 100 \
-o yolov5s_cali_table

After quantization you will get the quantization table yolov5s_cali_table

2. NNTC Quantization Model

$ calibration_use_pb quantize \
--model=./compilation/yolov5s_bmneto_test_fp32.prototxt \
--weights=./compilation/yolov5s_bmneto.fp32umodel \
-save_test_proto=True --bitwidth=TO_INT8

In nntc, after quantization, you get int8umodel and prototxt.

Copyright © SOPHGO 116

CHAPTER 18. APPENDIX.01: MIGRATING FROM NNTC TO TPU-MLIR

It is worth mentioning that mlir also has a run_qtable tool to help generate mixed-precision
models

18.3 Generating int8 models

To convert to an INT8 symmetric quantized model, execute the following command.

1. MLIR:

$ model_deploy.py \
---mlir yolov5s.mlir \
--quantize INT8 \
--calibration_table yolov5s_cali_table \
--processor bm1684 \
---test_input yolov5s_in_f32.npz \
--test_reference yolov5s_top_outputs.npz \
--tolerance 0.85,0.45 \
--model yolov5s_1684_int8_sym.bmodel

At the end of the run you get yolov5s_1684_int8_sym.bmodel.

2. NNTC:

In nntc, the int8 bmodel is generated using int8umodel and prototxt using the bmnetu
tool.

$ bmnetu --model=./compilation/yolov5s_bmneto_deploy_int8_unique_top.prototxt \
--weight=./compilation/yolov5s_bmneto.int8umodel

At the end of the run you get compilation.bmodel.

Copyright © SOPHGO 117

	TPU-MLIR Introduction
	Environment Setup
	Code Download
	Docker Configuration
	ModelZoo (Optional)
	Compilation

	User Interface
	Introduction
	model_transform.py
	run_calibration.py
	run_qtable.py
	model_deploy.py
	Other Tools
	model_runner.py
	npz_tool.py
	visual.py
	gen_rand_input.py

	Overall Design
	Layered
	Top Pass
	Tpu Pass
	Other Passes

	Front-end Conversion
	Main Work
	Workflow
	Example

	Quantization
	Basic Concepts
	Asymmetric Quantization
	Symmetric Quantization

	Scale Conversion
	Quantization derivation
	Convolution
	InnerProduct
	Add
	AvgPool
	LeakyReLU
	Pad
	PReLU

	Calibration
	General introduction
	Calibration data screening and preprocessing
	Screening Principles
	Input format and preprocessing

	Algorithm Implementation
	KLD Algorithm
	Auto-tune Algorithm

	Example: yolov5s calibration
	visual tool introduction

	Lowering
	Basic Process
	Mixed precision

	SubNet
	LayerGroup
	Basic Concepts
	BackwardH
	Dividing the Mem Cycle
	LMEM Allocation
	Divide the optimal Group

	GMEM Allocation
	1. Purpose
	1. Principle
	2.1. GMEM allocation in weight tensor
	2.2. GMEM allocation in global neuron tensors

	CodeGen
	Main Work
	Workflow
	BM168X and Related classes in TPU-MLIR
	Backend Function Loading
	Backend store_cmd

	MLIR Definition
	Top Dialect
	Operations
	AddOp
	AvgPoolOp
	Depth2SpaceOp
	BatchNormOp
	CastOp
	ClipOp
	ConcatOp
	ConvOp
	DeconvOp
	DivOp
	InputOp
	LeakyReluOp
	LSTMOp
	LogOp
	MaxPoolOp
	MatMulOp
	MulOp
	MulConstOp
	PermuteOp
	ReluOp
	ReshapeOp
	ScaleOp
	SigmoidOp
	SiLUOp
	SliceOp
	SoftmaxOp
	SqueezeOp
	UpsampleOp
	WeightOp

	Accuracy Validation
	Introduction
	Objects
	Metrics
	Datasets

	Validation Interface
	Validation Example
	mobilenet_v2
	yolov5s

	quantzation aware traing
	Basic Principles
	tpu-mlir QAT implementation scheme and characteristics
	Main body flow
	Features of the Scheme

	Installation Method
	Install from source
	Installing the wheel file

	Basic Steps
	Step 1: Interface import and model prepare
	Step 2: Calibration and quantization training
	Step 3: Export tuned fp32 model
	Step 4: Initiate the training
	Step 5: Transform deployment

	Use Examples-resnet18
	Tpu-mlir QAT test environment
	Adding a cfg File
	Modify and execute run_eval.py

	Use Examples-yolov5s

	TpuLang Interface
	Main Work
	Work Process
	Operator Conversion Example

	Custom Operators
	Overview
	Custom Operator Addition Process
	Add TpuLang Custom Operator
	Add Caffe Custom Operator

	Custom Operator Example
	Example of TpuLang
	Example of Caffe

	Appendix.01: Migrating from NNTC to tpu-mlir
	ONNX to MLIR
	Make a quantization calibration table
	Generating int8 models

