Multimedia Technical Reference Manual
Release 0.10.0

SOPHGO

Jun 19, 2024

menu

H W N

Disclaimer 1

Release note

Disclaimer

Multimedia User Guide

4.1

4.2

3
4
6
SOPHGO Multimedia Framework Introduction 6
4.1.1 Introduction i i e 6
4.1.2 BM1684 Hardware Acceleration Function. 8

4.1.2.1 VideoCodeC v v v v i it e e 8

4122 ImageCodec i i 9

4.1.2.3 ImageProcessing 9
4.1.3 Hardware Memory Classification 9

4.1.4 Frame Conversion . . . v v v v i i i e e e e e e e 11
4.1.4.1 Conversion between FFMPEGand OPENCV 12
4.1.4.2 Conversion between FFMPEG and BMCVAPI 13
4.1.4.3 Conversion between OPENCVand BMCVAPI 14

SOPHGO OpenCVUserGuideo i i ittt it e e e e 15

4.2.1 OpenCVintroduction 15

4.2.2 Data Structure Extension Description 16

4.2.3 APlExtensionDescription. e 17
4.2.3.1 boolVideoCapture::get_resampler(int *den, int *num) . .. 17
4.2.3.2 boolVideoCapture::set_resampler(intden, intnum) 17
4.2.3.3 double VideoCapture::get(CAP_PROP_TIMESTAMP) 18
4.2.3.4 double VideoCapture::get(CAP_PROP_STATUS) 18
4.2.3.5 boolVideoCapture::set(CAP_PROP_OUTPUT_SRC, double

resampler) 18
4.2.3.6 double VideoCapture::get(CAP_PROP_OUTPUT_SRC). ... 19
4.2.3.7 bool VideoCapture::set(CAP_PROP_OUTPUT_YUV, double

enable) 19
4.2.3.8 double VideoCapture::get(CAP_PROP_OUTPUT_YUV). ... 19
4239 bm_handle_t bmcv::getCard(intid=0) 20
4.2.3.10 intbmcv::getld(bm_handle_thandle) 20
4.2.3.11 bm_status_t bmcv::toBMI(Mat &m, bm_image *image,

boolupdate=true) 20

4.2.3.12 bm_status_t bmcv::toBMI(Mat &m, Mat&m1, Mat &m2, Mat
&m3, bm_image *image, bool update=true) 21

4.2.3.13

4.2.3.14

4.2.3.15

4.2.3.16

4.2.3.17

4.2.3.18

4.2.3.19

4.2.3.20

4.2.3.21
4.2.3.22
4.2.3.23

4.2.3.24
4.2.3.25
4.2.3.26
4.2.3.27

4.2.3.28
4.2.3.29
4.2.3.30
4.2.3.31
4.2.3.32
4.2.3.33
4.2.3.34

4.2.3.35
4.2.3.36
4.2.3.37

4.2.3.38

bm_status_t bmcv::toMAT(Mat &in, Mat &m0, bool up-
date=true)
bm_status_t toMAT(bm_image *image, Mat &m, int
color_space, int color_range, void* vaddr = NULL, int fd0 =
-1, bool update = true, bool nocopy =true)
bm_status_t bmcv::toMAT(bm_image *image, Mat &m0,
bool update = true, csc_type_t csc = CSC_MAX_ENUM) . . .
bm_status_t bmcv:itoMAT(bm_image *image, Mat
&m0, Mat &m1l, Mat &m2, Mat &m3, bool update=true,
csc_type_tcsc=CSC_MAX_ENUM)
bm_status_t bmcv::resize(Mat &m, Mat &out, bool update
=true, intinterpolation=BMCV_INTER_NEAREST)
bm_status_t bmcv::convert(Mat &m, Mat &out, bool up-
date=true)
bm_status_t bmcv::convert(Mat &m, std::vector<Rect>
&vrt, std::vector<Size> &vsz, std::vector<Mat> &out, bool
update= true, csc_type_t csc=CSC_YCbCr2RGB_BT601,
csc_matrix_t *matrix = nullptr, bmcv_resize_algorithm
algorithm=BMCV_INTER_LINEAR)
bm_status_t bmcv::convert(Mat &m, std::vector<Rect>
&vrt, bm_image *out, bool update=true)
void bmcv::uploadMat(Mat&mat)
void bmcv::downloadMat(Mat&mat)
bm_status_t bmecv::stitch(std::vector<Mat> &in,
std::vector<Rect>& srt, std::vector<Rect>& drt, Mat &out,
bool update = true, bmcv_resize_algorithm algorithm =
BMCV_INTER_LINEAR) it i i
void bmcv::print(Mat &m, booldump =false)
void bmcv::print(bm_image *image, booldump)
void bmcv::dumpMat(Mat &image, const String &nhame) . .
void bmcv::dumpBMImage(bm_image *image, const
String&fname)
boolMat::avOK()
intMatzavCols() o o o i
intMat::avRows() o o oo
intMat::avFormat()
int Mat::avAddr(intidx) o L
int Mat::avStep(intidx) L oo
AVFrame* av::create(int height, int width, int color_format,
void *data, long addr, int fd, int* plane_stride, int*
plane_size, int color_space = AVCOL_SPC_BT709, int
color_range = AVCOL_RANGE_MPEG, intid=0)
AVFrame* av::create(int height, int width, intid=0)
int av::copy(AVFrame *src, AVFrame *dst, intid)
intav::get_scale_and_plane(int color_format, int wscale[],
inthscale[]),
cv::Mat(AVFrame *frame,intid)

4.3

4.2.3.39 cv::Mat(int height, int width, int total, int _type, const
size_t* _steps, void* _data, unsigned long addr, int fd,

SophonDevice device=SophonDevice()) 37
4.2.3.40 Mat::Mat(SophonDevicedevice) 38
4.2.3.41 void Mat::create(AVFrame *frame, intid) 38

4.2.3.42 void Mat::create(int height, int width, int total, int _type,
const size_t* _steps, void* _data, unsigned long addr, int

fd,intid=0) e 39
4.2.3.43 void VideoWriter::write(InputArray image, char *data, int

len) oo e 40
4.2.3.44 virtual bool VideoCapture::grab(char *buf, unsigned int

len_in,unsignedint*len_out); 40

4.2.3.45 virtual bool VideoCapture::read_record(OutputArray im-
age, char *buf, unsigned int len_in, unsigned int *len_out); 40

4.2.4 OpenCV Extension for Hardware JPEG Decoder 41
4.2.4.1 OutputlmageDatainYUVFormat 41
4.2.4.2 List of Functions SupportingYUVFormat 42

4.2.5 Specify the PCIE Device to Run Hardware Acceleration 43
4.2.5.1 DefinitionofIDParameter 43
4.2.5.2 Specify the PCIE Device Using the ID Parameter 44

4.2.6 The Calling Principles of OpenCVand BMCVAPI 45

4.2.7 Introduction to National Standard GB28181 Interface in OpenCV . . 46
4.2.7.1 General Steps Supported by National Standard GB28181 . . 46
4.2.7.2 GB28181 Url Format Definition 46

4.2.8 BMCPU OPENCV AccelerationinPCIEMode 49
4.2.8.1 Conceptintroduction 49
4.2.8.2 InstructionsforUse., 50

429 CodeExample e 53

SOPHGO FFMPEG UserGuide i it i it e i e e 53

43.1 Preface e 53

4.3.2 HardwareVideoDecoder 53
4.3.2.1 Options Supported by Hardware Video Decoder 54

4.3.3 HardwareVideoEncoder 55
4.3.3.1 Options Supported by Hardware Video Encoders 56

434 HardwareJPEGDecoder 58
4.3.4.1 Options Supported by the Hardware JPEG Decoder 58

43.5 HardwareJPEGEncoder, 59
4.3.5.1 Options Supported by the Hardware JPEG Encoder 60

4.3.6 HardwareScaleFilter 60
4.3.6.1 Options Supported by the Hardware Scale Filter 61

4.3.7 AVFrame Special Definition Description 63

4.3.8

4.3.7.1 Definition of Avframe Interface Output by Hardware Decoder 64
4.3.7.2 Definition of Avframe Interface Input by Hardware Encoder 66
4.3.7.3 AVFrame Interface Definition of Hardware Filter Input and
Output e e e e e 67
Application Examples of Hardware Acceleration in FFMPEG Com-
Mand e e 68

4.4

43.81 Examplel e 69
43.82 Example2 e 69
43.83 Example3 e 70
43.84 Exampled e 70
4385 Example5 71
43.86 Example6 71
438.7 Example7 e e 72
43.88 Example8 e 72
438.9 Example9 e 73
43.8.10 Example10 e 73
43.8.11 Example 11l e 74
43.812 Example 12 e 74
43.813 Example 13 75
43.8.14 Example 14 e 75
4.3.9 Use Hardware Acceleration Function by Callingthe API 76
4.3.10 Hardware encoding Supportingroiencoding 76
SOPHGO LIBYUVUserGuide oottt ittt e e T7
44.1 Introduction e T7
4.4.2 Libyuv Extension Description. o ... 78
4421 fast_memcpy 78
4422 RGB24Tol400 ittt e e 78
4423 RAWTOI400. v it e e e e e e e 78
4424 1400ToRGB24 e 79
4425 1400TORAW o i e e e e e 79
4426 JA400ToRGB24 e e 80
4427 RAWTOJ400 ottt e e et et et 80
4.4.2.8 JA00TORAW e e e e e 81
4429 RAWTONVI2 e e et et e e 81
44.2.10 RGB24TONV12 o ottt e e e e e 82
4.42.11 RAWT0OJ420 e e 83
4.4.2.12 JA20TORAW e e e 83
4.4.2.13 RAWT0J422 e e 84
4.4.2.14 JA22ToRAW e e e 85
4.4.2.15 RGB24T0J422 o e 85
44.2.16 JA22TORGB24 e 86
4.42.17 RAWT0OJ444 e e 86
4.4.2.18 JAAATORAW e e e 87
4.4.2.19 RGB24ToJ444 e e e e 87
44220 JA44TOoRGB24 e 88
44221 HA20ToJ420 o v o e e e e e e e e 88
4.4.2.22 1420T0J420 it e e e e 89
44223 NVI2ToJ420 o oo e e e e e e 90
44224 NV21ToJ420 oo e e e 91
4.4.2.25 1444ToNV12 e e e 92
4.4.2.26 1422TONVI2 o e e e 93
4.4.2.27 1400ToNV12 e e 94

CHAPTER 1

Disclaimer

SOPHON

Legal Disclaimer
Copyright © SOPHGO 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of SOPHGO .

Notice

The purchased products, services and features are stipulated by the contract made
between SOPHGO and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided “ASIS” without warranties,
guarantees or representations of any kind, either express orimplied. The information in

CHAPTER 1. DISCLAIMER

this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements,
information, and recommendations in this document do not constitute a warranty of
any kind, express or implied.

Technical Support

Address Floor 6, Building 1, Yard 9, FengHao East Road, Haidian District, Bei-
jing, 100094, China

Website https://www.sophgo.com/
Email sales@sophgo.com

Phone +86-10-57590723 +86-10-57590724

Copyright © SOPHGO

https://www.sophgo.com/
mailto:sales@sophgo.com

CHAPTER 2

Release note

Version Date of Release Description

V0.1.0 2022.08.10 First release, contains SOPHON ffmpeg and
SOPHON opencv

V0.2.4 2022.08.30 Official release, supplement documents

V0.6.0 2023.02.28 Added new features: watermark, mosaic, uni-
fied memory allocation

V0.6.1 2023.03.31 Add sample installation and use method

V0.7.0 2023.05.16 1, bm_opencv support imshow; 2, fix bug.

V0.7.1 2023.07.11 1, bm_ffmpeg supports jpeg loop dec; 2, new
operator bayer2rgb.

V0.7.3 2023.10.18 1, fix bug.

V0.8.0 2023.08.01 1, fix bug.

V0.10.0 2024.04.11 1, Open the bmvid interface; 2, VPU dec sup-
ports external allocation of physical memory;
3, Update the video codec firmware.

CHAPTER 3

Disclaimer

SOPHON

Legal Disclaimer
Copyright © SOPHGO 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any
means without prior written consent of SOPHGO .

Notice

The purchased products, services and features are stipulated by the contract made
between SOPHGO and the customer. All or part of the products, services and features
described in this document may not be within the purchase scope or the usage scope.
Unless otherwise specified in the contract, all statements, information, and
recommendations in this document are provided “ASIS” without warranties,
guarantees or representations of any kind, either express orimplied. The information in

CHAPTER 3. DISCLAIMER

this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements,
information, and recommendations in this document do not constitute a warranty of
any kind, express or implied.

Technical Support

Address Floor 6, Building 1, Yard 9, FengHao East Road, Haidian District, Bei-
jing, 100094, China

Website https://www.sophgo.com/
Email sales@sophgo.com

Phone +86-10-57590723 +86-10-57590724

Copyright © SOPHGO

https://www.sophgo.com/
mailto:sales@sophgo.com

CHAPTER 4

Multimedia User Guide

4.1 SOPHGO Multimedia Framework Introduction

4.1.1 Introduction

The multimedia framework described in this document is described for the SOPHON
BM168x product series of SOPHGO, which currently includes BM1682,BM1684X and
BM1684. Among them,1) BM1682 has no video encoding hardware unit, so all the con-
tent about video hardware encoding in this document is only for BM1684/BM1684X;
2) The PCIE mode mentioned in this document is only for BM1684/BM1684X, and only
the soc mode is supported in BM1682; 3) The functions under the bmcv namespace in
Opencv mentioned in this document are only for BM1684/BM1684X.

The coverage of the multimedia framework described in this document includes the
video decoding VPU module, video encoding VPU module, image encoding JPU module,
image decoding JPU module, and image processing module VPP in BM168x product fam-
ily. The functions of these modules are encapsulated in the FFMPEG and OPENCV open-
source frameworks. Users can choose FFMPEG APl or OPENCV API according to their own
development preference. Fortheimage processing module, we also provide the underly-
ing interface of SOPHGO own BMCV API. This part of the interface is described in a special
document. You can refer to the “BMCV Technical Reference Manual” , which will not be
described in detail in this document. Only the hierarchical relationship between these
three sets of APIs and how to convert each other are introduced.

The three APIs of OPENCV, FFMPEG and BMCV are functionally subsets, but some of them
cannot be included, and are specifically marked in the brackets below.

1) BMCV API contains all the image processing acceleration interfaces that can be ac-

CHAPTER 4. MULTIMEDIA USER GUIDE

celerated by hardware (here image processing hardware acceleration, including hard-
ware image processing VPP module acceleration, and image processing functions im-
plemented by using other hardware modules)

2) FFMPEG API includes all hardware-accelerated video/image codec interfaces, all
software-supported video/image codec interfaces (that is, all FFMPEG open-source sup-
ported formats), and some hardware-accelerated image processing interfaces supported
by the bm_scale filter (these image processing interface, only includes scaling, crop,
padding and color conversion functions accelerated by hardware image processing VPP
module)

3) OPENCV APl includes all hardware and software video codec interfaces supported by
FFMPEG (the bottom layer of the video module is supported by FFMPEG, and this part of
the functionis completely covered), hardware-accelerated JPEG codec interfaces, and all
otherimage codec interfaces supported by software (that is, allimage formats supported
by open-source opencv), some hardware-accelerated image processing interfaces (re-
ferring to the scaling, crop, padding, and color conversion functions accelerated by the
image processing VPP module), and all software-supported OPENCV image processing
functions.

Among these three frameworks, BMCV focuses on image processing functions and can
be accelerated by BM168x hardware; FFMPEG framework is strong in the encoding and
decoding ofimages and videos and supports almost all formats, the difference is whether
it can be accelerated by hardware; OPENCV framework is strong in image processing.
Various image processing algorithms are firstly integrated into the OPENCV framework,
and the video codec module is implemented by calling FFMPEG at the bottom layer.

Because BMCV only provides image processing interfaces, users generally choose one
of the FFMPEG or OPENCV frameworks as the main framework for development. These
two frameworks, in terms of functional abstraction, the interface of OPENCV is more con-
cise, and one interface can realize a video encoding and decoding operation; in terms of
performance, the performance of these two frameworks is exactly the same, and there
is almost no difference. In terms of codec, OPENCV is just a layer of encapsulation for
the FFMPEG interface; In terms of flexibility, FFMPEG has more separated interfaces with
finer granularity of operations that can be inserted. Most importantly, users still have
to make choices based on their familiarity with a certain framework. Only with in-depth
understanding can they make good use of the framework.

The hierarchical relationship of these three frameworks is shown in the figure

Copyright © SOPHGO 7

CHAPTER 4. MULTIMEDIA USER GUIDE

OPENCV

BMSDK API

Figure 1 Hierarchical Calling Relationship between OPENCV/FFMPEG/BMCV and BMSDK

In many application scenarios, special functions under a certain framework need to be
used, so a flexible conversion scheme between the three frameworks is given is Section
4. This conversion does not require a large number of data copies so there is little per-
formance penalty.

4.1.2 BM1684 Hardware Acceleration Function

This section presents the functions supported by the hardware acceleration module in
the multimedia framework. The hardware acceleration module includes video decoding
VPU module, video encoding VPU module, image encoding and decoding JPU module,
and image processing VPP module.

It is important to note that only the capabilities that can be accelerated with hardware
are listed here, along with performance estimates for typical scenarios. For more detailed
performance indicators, please refer to the BM168x product specification.

4.1.2.1 Video Codec

BM1684 supports hardware decoding acceleration of H264 (AVC), HEVC video format, and
supports real-time decoding up to 4K video. Support H264 (AVC), HEVC video format
hardware encoding, up to real-time encoding of HD (1080p) video.

The speed of video decoding s highly related to the format of the input video stream, and
the decoding speed of streams with different complexity has relatively large fluctuations,
such as bit rate, GOP structure, resolution, etc., which will affect the specific test results.

Copyright © SOPHGO 8

CHAPTER 4. MULTIMEDIA USER GUIDE

Generally speaking, for video surveillance application scenarios, a single processor of
BM1684 can support up to 32 channels of real-time HD decoding.

The speed of video encoding is highly related to the configuration parameters of encod-
ing. Under different encoding configurations, even with the same video content, the en-
coding speed is not exactly the same. Generally speaking, a single processor of BM1684
can support up to 2 channels of HD real-time encoding.

4.1.2.2 Image Codec

BM1684 support hardware encoding/decoding acceleration of JPEG baseline format.
Note that only the hardware codec acceleration of the JPEG baseline grade is supported.
For other image formats, including JPEG2000, BMP, PNG, and JPEG standard grades
such as progressive, lossless, etc., the soft decoding is automatically supported. In the
OPENCV framework, this compatibility support is transparent to the users and requires
no special handling by users during application development.

The processing speed of image hardware codec has a great relationship with the resolu-
tion of the image and the image color space (YUV420/422/444), Generally speaking, for
a picture with a resolution of 1920x1080 and YUV420 color space, the single-processor
image hardware codec can reach about 600fps.

4.1.2.3 Image Processing

BM1684 has a dedicated video processing VPP unit to perform hardware acceleration
processing on images. Supported image operations include color conversion, image
scaling, image crop, and image stitch functions. Maximum support up to 4k image input.
For some common complex image processing functions not supported by VPP, such as
linear transformation ax+b, histogram, etc., we use other hardware units to do special
acceleration processing in the BMCV APl interface.

4.1.3 Hardware Memory Classification

In the subsequent discussion, the memory synchronization problem is a relatively hid-
den problem that is often encountered in application debugging. We usually refer to the
synchronization between these two types of memory uniformly as device memory and
host memory. According to the different product types of BM168x, these two memories
have different meanings in SOC mode and PCIE mode respectively.

SOC mode means that the processor in the BM168x processor is used as the main control
processor, and the BM168x product runs the application program independently. Typical
products are SE5, SM5-soc modules. Inthis mode, the ION memory under Linux systemis
used to manage the device memory. In the SOC mode, the device memory refers to the
physical memory allocated by ION, and the system memory is actually the cache. The
naming here is only to be consistent with the PCIE mode. From system memory (cache)

Copyright © SOPHGO 9

CHAPTER 4. MULTIMEDIA USER GUIDE

to device memory, it is called Upload (essentially cache flush); from device memory to
system memory (cache), it is called Download (essentially cache invalidation). In SOC
mode, the device memory and the system memory are actually the same physical mem-
ory. Most of the time, the operating system will automatically synchronize them, which
also makes the phenomenon that the memory is not synchronized in time is more subtle
and difficult to reproduce.

PCIE mode means that the BM168x product is inserted into the server host as a PCIE
board to work, and the application program runs on the processor of the server host.
In PCIE mode, the device memory refers to the physical memory on the PCIE board and
is not included in the server host memory; the system memory refers to the server host
memory. From system memory to device memory, it is called Upload (in essence, pcie
writes data); from device memory to system memory, it is called Download (in essence,
pcie reads data). In PCIE mode, the device memory and the system memory are two
physically independent pieces of physical memory. The Download/Upload operation
must be performed to ensure that the two pieces of memory are kept in sync.

Upload Upload

mmap virtual address

Download Download

ION device memory BM168X device memory

S0OC mode memory sync PCIE mode memory sync

Figure 2 Memory Synchronization Model

Both FFMPEG and OPENCV frameworks provide functions for memory synchronization
operations. The BMCV APl is only for device memory operations, so there is no memory
synchronization problem. When calling the BMCV API, the data needs to be prepared in
the device memory.

In the OPENCV framework, the update flag is provided in the formal parameters of some
functions. When the flag is set to true, the function will automatically perform mem-
ory synchronization operations. This part can refer to the subsequent API introduction
in Chapter 2, Section 3.Users can also actively control memory synchronization through
the two functions bmcv::downloadMat() and bmcv::uploadMat(). The basic principles of
synchronization are: a) In the OPENCV native function, the data in the device memory in

Copyright © SOPHGO 10

CHAPTER 4. MULTIMEDIA USER GUIDE

the yuv Mat format is always the latest, and the data in the system memory in the RGB
Mat format is always the latest b) When the OPENCV function switches to the BMCV API
, according to the previous principle, synchronize the latest data to the device memory;
on the contrary, when switching from the BMCV API to the OPENCV function, synchro-
nize the latest data to the system memory under the RGB Mat. ¢) When frame switching
does not occur, minimize memory synchronization operations. Frequent memory syn-
chronization operations can significantly degrade performance.

In the regular FFMPEG framework, there are two classes of codec APIs and filter APIs
called soft (regular) and hard (hwaccel). The framework of these two APIs can support the
hardware video codec and hardware image filter of BM168x. From this perspective, the
underlying performance of soft decoding and hard decoding is exactly the same, but the
difference in usage preferences. The usage of the soft codec/filter APl is exactly the same
as the usual ffmpeg built-in codec. The hard codec/filter API uses -hwaccel to specify
and enable the dedicated hardware device for bmcodec. When in the soft codec APl and
filter API, the flag parameter “is_dma_buffer” or “zero_copy” is passed in through
av_dict_set to control whether the internal codec or filter synchronizes the device mem-
ory data to the system memory. The specific parameters can be viewed with ffmpeg -h .
When the subsequent direct connection to the hardware processing, it usually does not
need to synchronize the device memory data to the system memory.

In the hwaccel codec API and filter API, the default memory is only device memory, and
no system memory is allocated. If memory synchronizationis required, itis done through
the hwupload and hwdownload filters.

To sum up, both OPENCV and FFMPEG frameworks provide support for memory synchro-
nization, and applications can choose the corresponding framework according to their
own usage preferences to precisely control data synchronization. The BMCV API always
works on device memory.

4.1.4 Frame Conversion

In application development, there are always situations where a certain framework can-
not fully meet the design requirements. At this time, it is necessary to quickly switch
between various frameworks. The BM168x multimedia framework provides support to
meet this demand, and this switching does not perform data copying, which has almost
no impact on performance.

Copyright © SOPHGO 11

CHAPTER 4. MULTIMEDIA USER GUIDE

4.1.4.1 Conversion between FFMPEG and OPENCV

The conversion between FFMPEG and OPENCV is mainly the format conversion between
the data format AVFrame and cv::Mat.

When the cooperation between FFMPEG and OPENCYV is required, it is recommended
to use the general non-HWAccel API path. At present, OPENCV internally adopts this
method, and the verification is relatively complete.

FFMPEG AVFrame to OPENCV Mat format is as follows.
1. AVFrame * picture;

2. After a series of processing by FFMPEG API, such as avcodec_decode_video2 or av-
codec_receive_frame, and then convert the result to Mat

3. card_id isthe order number of the device for FFMPEG hardware-accelerated decoding.
In the regular codec API, it is specified by sophon_idx of av_dict_set, or in the hwaccel
AP, itis specified when the hwaccel device isinitialized, and the default is 0 in soc mode.

4, cv::Mat ocv_frame(picture, card_id);

5. Or format conversion can be done in a step-by-step manner
6. cv::Mat ocv_frame;

7. ocv_frame.create(picture, card_id);

8. Thenyou can use ocv_frame for opencv operations. At this time, the ocv_frame format
is the yuv mat type extended by BM168x. If you want to convert to the OPENCV standard
bgr mat format later, you can do the following.

9. Note: There is a memory synchronization operation here. If not set, FFMPEG is in the
device memory by default. If update=false, then the data converted to bgr is always in
the device memory, and the system memory is invalid data, If update=true, the device
memory is synchronized to the system memory. If the follow-up is still hardware accel-
erated processing, you can set update=false, which can improve the efficiency. When
you need to use the system memory data, you can explicitly call bmcv::downloadMat()
to synchronize.

10. cv::Mat bgr_mat;
11. cv::bmcv::itoMAT(ocv_frame, bgr_mat, update);

12. Finally, AVFrame *picture will be released by Mat ocv_frame, so there is
no need to perform av_frame_free() operation on picture. If you want to call
av_frame_free to release the picture externally, you can add card_id = card_id |
BM_MAKEFLAG(UMatData::AVFRAME_ATTACHED,0,0), this standard indicates that the
creation and release of AVFrame are managed externally

13. ocv_frame.release();

14. picture = nullptr;

Copyright © SOPHGO 12

CHAPTER 4. MULTIMEDIA USER GUIDE

It is rare for OPENCV Mat to be converted into FFMPEG AVFrame, because almost all re-
quired FFMPEG operations have corresponding encapsulation interfaces in opencv. For
example, FFMPEG decoding has a videoCapture class in OPENCV, FFMPEG encoding has
a videoWriter class in OPENCV, and FFMPEG’ s filter operation corresponding to image
processing has an interface under the bmcv namespace and rich native image processing
functions in OPENCV.

Generally speaking, converting OPENCV Mat to FFMPEG AVFrame refers to yuv Mat. In
this case, the conversion can be done as follows.

1. Create a yuv Mat, if the yuv Mat already exists, you can ignore this step. card_id is the
order number of the BM168x device, and it defaults to 0 in soc mode

2. AVFrame * f = cv:avicreate(height, width, AV_PIX_FMT_YUV420P, NULL, O, -
1, NULL, NULL, AVCOL_SPC_BT709, AVCOL_RANGE_MPEG, card_id);

3. cv::Mat image(f, card_id);

4. do something in opencv

5. AVFrame * frame = image.u->frame;
6. call FFMPEG API

7. Note: Before the FFMPEG call is completed, it must be ensured that the Mat image
is not released, otherwise the AVFrame will be released together with the Mat image. If
you need to separate the two declaration cycles, the image declaration above should be
changed to the following format.

8. cv::Mat image(f, card_id | BM_MAKEFLAG(UMatData::AVFRAME_ATTACHED, 0, 0));

9. This way Mat won’ t take over the memory release of the AVFrame

4.1.4.2 Conversion between FFMPEG and BMCV API

FFMPEG often needs to be used in conjunction with the BMCV API, so the conversion be-
tween FFMPEG and BMCV is relatively frequent. For this purpose, we have specially given
an example ff_bmcv_transcode, which can be found in the bmnnsdk2 release package.

The ff_bmcv_transcode example demonstrates the process of decoding with FFM-
PEG, converting the decoding result to BMCV for processing, and then converting
back to FFMPEG for encoding. The mutual conversion between FFMPEG and BMCV
can refer to the avframe_to_bm_image() and bm_image_to_avframe() functions in the
ff_avframe_convert.cpp file.

Copyright © SOPHGO 13

CHAPTER 4. MULTIMEDIA USER GUIDE

4.1.4.3 Conversion between OPENCV and BMCV API

For conversion between OPENCV and BMCV API, special conversion functions are pro-
vided under the bmcv namespace extended by OPENCV.

Convert OPENCV Mat to BMCV bm_image format:
1. cv::Mat m(height, width, CV_8UC3, card_id);

2. opencv operation

3. bm_image bmcv_image;

4. Here update is used to control memory synchronization. Whether memory synchro-
nization is required depends on the previous OPENCV operation. If the previous oper-
ations are completed with hardware acceleration and the latest data is in the device
memory, there is no need to perform memory synchronization. If the previous opera-
tion is called The OPENCV function does not use hardware acceleration (the subsequent
OPENCYV chapter 6.2 mentions which functions use hardware acceleration), and memory
synchronization is required for the bgr mat format.

5. You can also explicitly call cv::bmcv::uploadMat(m) to achieve memory synchroniza-
tion before calling the following function

6. cv::bmcv::itoBMI(m, &bmcv_image, update);

7. Use bmcv_image to make bmcv api calls. During the call, pay attention to ensure that
Mat m cannot be released, because bmcv_image uses the memory space allocated in Mat
m. handle can be obtained by bm_image_get_handle()

8. Release: This function must be called because bm_image is created in toBMI, other-
wise there will be a memory leak

9. bm_image_destroy(bmcv_image);
10. m.release();

There are two ways to convert from BMCV bm_image format to OPENCV Mat. One is to
copy data, so that bm_image and Mat are independent of each other and can be released
separately, but there is a performance loss; one is to directly refer to bm_image memory
without any performance loss.

1. bm_image bmcv_image;
2. Call bmcv API to allocate memory space to bmcv_image and operate
3. Mat m_copy, m_nocopy;

4. The following interface will copy memory data and convert it into standard bgr mat
format.

5. Update controls memory synchronization. You can also use bmcv::downloadMat() to
control memory synchronization after calling this function.

6. csc_type is the control color conversion coefficient matrix, which controls the conver-
sion of different yuv color spaces to bgr

Copyright © SOPHGO 14

CHAPTER 4. MULTIMEDIA USER GUIDE

7. cvi:bmcv::toMAT(&bmcv_image, m_copy, update, csc_type);

8. The following interface will directly refer to bm_image memory (nocopy flag is true),
and updateiis still according to the previous description, choose whether to synchronize
memory or not.

9. Insubsequentopencv operations, it must be ensured thatbmcv_image is not released,
because the memory of mat is directly referenced from bm_image

10. cv::bmev::toMAT(&bmcev_image, &m_nocopy, AVCOL_SPC_BT709, AV-
COL_RANGE_MPEG, NULL, -1, update, true);

11. For opencv

4.2 SOPHGO OpenCV User Guide

4.2.1 OpenCV Introduction

The multimedia, BMCV and NPU hardware modules in the BM168x series can accelerate
the processing of pictures and videos:

1) Multimedia module: hardware-accelerated JPEG codec and Video codec opera-
tions.

2) BMCV module: hardware-accelerated image resize, color conversion, crop, split,
linear transform, nms, sort and other operations.

3) NPU module: Hardware accelerated split, rgb2gray, mean, scale, int8tofloat32 op-
erations on images.

In order to facilitate customers to use the hardware modules on the processor to acceler-
ate the processing of pictures and videos, and improve the performance of the applica-
tion OpenCV software, the OpenCV library has been modified by SOPHGO, and the hard-
ware modules are called internally to perform Image and Video-related processing.

The current OpenCV version of SOPHGO is 4.1.0. Except for the following SOPHGO own
APIs, all other APIs are consistent with the OpenCV API.

BM168x series have two application environments: SOC mode and PCIE card mode. In
SOC mode, the built-in ARM A53 core of the BM168x series is used as the main control
processor to directly control and allocate the internal resources of the processor. In PCIE
mode, the BM168x series is inserted into the host as a PCIE card, and the host processor
controls and allocates resources through the PCIE interface. The SOPHGO OpenCV in-
terface is compatible in both modes and behaves basically the same with the following
minor differences:

In SOC mode, due to hardware limitations, in the Mat object of the OpenCV library, the
step value will be automatically set to 64bytes alignment, and the data less than 64bytes
will be padded with random numbers. In PCIE mode, there is no 64bytes alignment limit
for Mat steps. For example, in a 100100 picture, the RGB of each pixel is represented by

Copyright © SOPHGO 15

CHAPTER 4. MULTIMEDIA USER GUIDE

3 U8 values, the normal step value is 300, but after 64bytes alignment, the step value is
finally 320. As shown in the figure below, in the data of the Mat object, the data of each
step is a continuous 320 bytes, of which the first 300 are real data, and the last 20 are
automatically filled random numbers.

127, 130, 131, 126, 129, 130, 124, 126,ccceeeeees; X, X, X, X, X, X, X, X, Xerennnnnn

L J \)

300 real data 20 random data

Figure 3 Alignment Introduction

In SOC mode, due to the extra random numbersfilled, the data variable of the data stored
in the Mat object cannot be directly passed to the API of the BMRuntime library for in-
ference, otherwise the accuracy of the model will be reduced. Please set stride to non-
aligned mode when the last BMCV does the transformation, and the excess random num-
bers will be automatically cleared.

4.2.2 Data Structure Extension Description

The color space of OpenCV’ s built-in standard processing is BGR format, but in many
cases, for video and image sources, processing directly in the YUV color space can
save bandwidth and avoid unnecessary mutual conversion between YUV and RGB. So
SOPHGO Opencv extends the Mat class.

1) In Mat.UMatData, the AVFrame member is introduced to extend support for various
YUV formats. Where the format definition of AVFrame is compatible with the defini-
tion in FFMPEG

2) In Mat.UMatData, the definitions of fd, addr (in soc mode) or hid, mem (in pcie
mode) are added, which represent the corresponding memory management han-
dle and physical memory address respectively

3) Variable fromhardware variable is added to the Mat class to identify whether the
current video and picture decoding is done by hardware or software.

Copyright © SOPHGO 16

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3 API Extension Description

4.2.3.1 bool VideoCapture::get _resampler(int *den, int *num)

Function Proto-
type

bool VideoCapture::get resampler(int *den, int *num)

Function

Get the sample rate of the video. For example, den=5, num=3 means
2 frames are discarded every 5 frames.

Input Params

int *den - denominator of sample rate

int *num - numerator of sample rate

Output Params | None
Return Value true - successful implementation false - failed implementation
Description This interface will be deprecated. It is recommended to use double

VideoCapture::get(CAP_PROP_OUTPUT_SRC) interface.

4.2.3.2 bool VideoCapture::set _resampler(int den, int num)

Function Proto-
type

bool VideoCapture::set resampler(int den, int num)

Function

Set the sample rate of the video. For example, den=5, num=3 means
2 frames are discarded every 5 frames.

Input Params

int den - denominator of sample rate

int num - numerator of sample rate

OutputParams | None
Return Value true - successful implementation false - failed implementation
Description This interface will be deprecated. It is recommended to use bool

VideoCapture::set(CAP_PROP_OUTPUT_SRC, double resampler) in-
terface.

Copyright © SOPHGO 17

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.3 double VideoCapture::get(CAP_PROP _TIMESTAMP)

Function double VideoCapture::get(CAP_PROP_TIMESTAMP)

Prototype

Function Provides the timestamp of the current picture, the time base depends on
the time base given in the stream.

Input CAP_PROP_TIMESTAMP - A specific enumeration type indicates getting

Params timestamps, this type is defined by SOPHGO

Output None

Params

Return Convert the return value to unsigned int64 data type before use

Value 0x8000000000000000L-No AV PTS value

other-AV PTS value

4.2.3.4 double VideoCapture::get(CAP_PROP _STATUS)

Function Pro- | double VideoCapture::get(CAP_PROP_STATUS)

totype

Function

This function provides an interface for checking the internal running
status of video capture.

Input Params | CAP_PROP_STATUS - Aspecificenumeration type defined by SOPHGO

Output
Params

None

Return Value | Convert the return value to int data type before use

0 Video capture is stopped, paused or otherwise inoperable

1Video capture is in progress

2 Video capture is end

4.2.3.5 bool VideoCapture::set(CAP_PROP_OUTPUT _SRC, double resampler)

Function double VideoCapture::get(CAP_PROP OUTPUT SRC, double resampler)
Prototype
Function | Setthe sample rate of YUV video. If the resampler is 0.4, means 2 frames
are reserved in every 5 frames, and 3 frames are discarded.
Input CAP_PROP_OUTPUT_SRC - A specific enumeration type indicates getting
Params timestamps, this type is defined by SOPHGO
double resampler - sample rate
Output None
Params
Return true - successful implementation
Value false - failed implementation

Copyright © SOPHGO 18

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.6 double VideoCapture::get(CAP_PROP _OUTPUT _SRC)

Function Proto-
type

double VideoCapture::get(CAP_PROP_OUTPUT _SRC)

Function

Get the sample rate of the video.

Input Params

CAP_PROP_OUTPUT_SRC - A specific enumeration type indicates
video output, this type is defined by SOPHGO

Output Params

None

Return Value

Sample rate value

4.2.3.7 bool VideoCapture::set(CAP_PROP _OUTPUT YUV, double enable)

Function Proto-
type

bool VideoCapture::set(CAP_PROP_OUTPUT YUV, double enable)

Function

Turns frame output in YUV format on or off. The YUV format in the
BM168x series is 1420

Input Params

CAP_PROP_OUTPUT_YUV - A specific enumeration type, referring
to the video frame output in YUV format, this type is defined by
SOPHGO;

double enable - OP code, 1 means open, 0 means close

Output Params

None

Return Value

true - successful implementation false - failed implementation

4.2.3.8 double VideoCapture::get(CAP_PROP_OUTPUT _YUV)

Function Proto-
type

double VideoCapture::get(CAP_PROP_OUTPUT _YUV)

Function

Get the state of the YUV video frame output.

Input Params

CAP_PROP_OUTPUT_YUV - A specific enumeration type, referring
to the video frame output in YUV format, this type is defined by
SOPHGO.

Output Params

None

Return Value

Status of YUV video frame output. 1 means open, 0 means close.

Copyright © SOPHGO 19

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.9 bm_handle_t bmcv::getCard(int id = 0)

Function Proto-
type

bm handle t bmcv::getCard(int id = 0)

Function

Get the device handle of the PCIE card used internally by SOPHGO
OpenCV. Valid in PCIE mode

Input Params

int id - PCIE card order number, constant 0 in SOC

Output Params | None
Return Value device handle of the PCIE card
Description The bm_image is converted through the toBMl interface. When call-

ing the bmcv API, the handle of the bm_image is required to be cre-
ated, and this interface can support getting the handle.

4.2.3.10 int bmev::getld(bm _handle t handle)

Function Proto-

int bmcv::getld(bm _handle t handle)

type

Function Query card order number according to PCIE device handle
Input Params | Bm_handle_t handle - PCIE device handle

Output Params | None

Return Value

PCIE card order number

4.2.3.11 bm_status_t bmcv::toBMI(Mat &m, bm _image *image, bool update = true)

Function Proto-
type

bm status t bmcv::toBMI(Mat &m, bm _image *image, bool date = true)

Function

The OpenCV Mat object is converted into the bm_image data object
of the corresponding format in the BMCV interface. This interface di-
rectly references the data pointer of the Mat, and no copy operation
occurs. This interface only supports 1IN mode

Input Params

Mat& m - Mat object, which can be in extended YUV format or stan-
dard OpenCV BGR format;

bool update - Whether to synchronize cache or memory. If true, the
cache or PCIE card device memory will be synchronized after the
conversion is completed

Output Params | bm_image *image - BMCV bm_image data object of the correspond-
ing format

Return Value BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Description

Currently supports format conversion of compressed formats, Gray,
NV12, NV16, YUV444P, YUV422P, YUV420P, BGR separate, BGR
packed, CV_8UC1

Copyright © SOPHGO 20

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.12 bm_status_t bmcv::toBMI(Mat &m, Mat &m1, Mat &m2, Mat &m3, bm _image *image,
bool update = true)

Function Proto- | bm status t bmcv::toBMI(Mat &m, Mat &ml, Mat &m2, Mat &m3,
type bm _image *image, bool update = true)

Function The OpenCV Mat object is converted into the bm_image data object
of the corresponding format in the BMCV interface. This interface di-
rectly references the data pointer of the Mat, and no copy operation
occurs. This interface is for the 4N mode of BMCV. The input image
format of all Mats is required to be the same, only valid for BM1684

Input Params | Mat &m - The first image in 4N, extended YUV format or standard
OpenCV BGR format.

Mat &m1 - The second image in 4N, extended YUV format or standard
OpenCV BGR format.

Mat &m2 - The third image in 4N, extended YUV format or standard
OpenCV BGR format.

Mat &m3 - The fourth image in 4N, extended YUV format or standard
OpenCV BGR format.

bool update - Whether to synchronize cache or memory. If true, the
cache or PCIE card device memory will be synchronized after the
conversion is completed

Output Params | bm_image *image - The BMCV bm_image data object of the corre-
sponding format, which contains 4 image data

Return Value BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Description Currently supports format conversion of compressed formats, Gray,
NV12, NV16, YUV444P, YUV422P, YUV420P, BGR separate, BGR
packed, CV_8UC1

Copyright © SOPHGO 21

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.13 bm_status_t bmcv::toMAT(Mat &in, Mat &m0, bool update=true)

Function Proto-
type

bm status t bmcv::toMAT(Mat &in, Mat &m0, bool update = true)

Function

The input MAT object, which can be in various YUV or BGR formats,
is converted into a MAT object output in BGR packet format

Input Params

Mat &in - The input MAT object can be in various YUV formats or BGR
formats;

bool update - Whether to synchronize cache or memory. If true, the
cache or PCIE card device memory will be synchronized after the
conversion is completed

Output Params

Mat &m0 - The output MAT object is converted into the standard
OpenCV BGR format

Return Value

BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Description

Currently supports compressed format, Gray, NV12, NV16, YUV444P,
YUV422P, YUV420P, BGR separate, BGR packed, CV_8UC1 to BGR
packed format conversion. In the YUV format, the correct color con-
version matrix will be automatically selected according to the col-
orspace and color_range information in the AVFrame structure.

Copyright © SOPHGO 22

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.14 bm_status_t toMAT(bm _image *image, Mat &m, int color _space, int color range, void*
vaddr = NULL, int fd0 = -1, bool update = true, bool nocopy = true)

Function Proto-
type

bm status_t bmcv::toMAT(bm _image *image, Mat &m, int color _space,
int color range, void* vaddr=NULL, int fd0=-1, bool update=true, bool
nocopy=true)

Function

The input bm_image object, when nocopy is true, directly multi-
plexes the device memory and converts it to Mat format. When
nocopy is false, the behavior is similar to 3.13 toMAT interface, 1N
mode.

Input Params

bm_image *image - The input bm_image object can be in various
YUV formats or BGR formats;

Int color_space - The color space of the input image, which can be
AVCOL_SPC_BT709 or AVCOL_SPC_BT470, see the definition in FFM-
PEG pixfmt.h for details;

Int color_range - The color dynamic range of the input image, which
can be AVCOL_RANGE_MPEG or AVCOL_RANGE_JPEG, see the defi-
nition in FFMPEG pixfmt.h for details;

Void* vaddr - Output Mat’ s system virtual memory pointer. If allo-
cated, output Mat directly uses this memory as Mat’ s system mem-
ory. If NULL, Mat is internally allocated automatically;

Int fdO - Physical memory handle of the output Mat, if negative, use
the device memory handle in bm_image, otherwise use the handle
given by fd0 to mmap the device memory;

bool update -Whether to synchronize cache or memory. If it is true,
the cache or PCIE card device memory will be synchronized to the
system memory after the conversion is completed;

bool nocopy - If true, it will directly refer to the device memory of
bm_image, if false, it will be converted into standard BGR Mat for-
mat.

Output Params

Mat &m - The output MAT object, when nocopy is true, outputs Mat in
standard BGR format or extended YUV format; when nocopy is false,
converts into standard OpenCV BGR format.

Return Value

BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Description

1.The no copy mode only supports the 1IN mode, and the 4N mode
cannot support reference because of the memory arrangement.
2.When nocopy is false, the correct color conversion matrix will be
automatically selected for color conversion according to the param-
eters colorspace and color_range information.

3.If the system memory vaddr is external, then the external needs
to manage the release of this memory, and the memory will not be
released when Mat is released

Copyright © SOPHGO 23

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.15 bm_status t bmcv::toMAT(bm _image *image, Mat &m0, bool update = true, csc_type t
csc = CSC_MAX_ ENUM)

Function Proto- | bm_status t bmcv::toMAT(bm_ image *image, Mat &m0, bool up-
type date=true, csc_type t csc=CSC_MAX ENUM)

Function The input bm_image object can be in various YUV or BGR formats,
converted to MAT object output in BGR format, 1N mode

Input Params | bm_image *image - The input bm_image object can be in various
YUV formats or BGR formats;

bool update - Whether to synchronize cache or memory. If it is true,
the cache or PCIE card device memory will be synchronized after the
conversion is completed;

csc_type_t csc - Color conversion matrix, default is
YPbPr2RGB_BT601

Output Params | Mat &m0 - The output MAT object is converted into the standard
OpenCV BGR format

Return Value BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

4.2.3.16 bm_status t bmcv::toMAT(bm _image *image, Mat &m0, Mat &m1, Mat &m2, Mat &m3,
bool update=true, csc_type t csc=CSC_MAX ENUM)

Function Proto- | bm_status t bmcv::toMAT(bm _image *image, Mat &m0, Mat &m1, Mat

type &m?2, Mat &m3, bool update=true, csc_type t csc=CSC_MAX ENUM)

Function The input bm_image object can be in various YUV or BGR formats,
converted to MAT object output in BGR format, 4N mode, only valid
in BM1684

Input Params | bm_image *image - The input bm_image object in 4N mode can be
in various YUV formats or BGR formats;

bool update - Whether to synchronize cache or memory. If it is true,
the cache or PCIE card device memory will be synchronized after the
conversion is completed;

csc_type_t csc - Color conversion matrix, default is
YPbPr2RGB_BT601

Output Params | Mat &m0 - The first MAT object output is converted into the standard
OpenCV BGR format;

Mat &m1 - The second MAT object output is converted into the stan-
dard OpenCV BGR format;

Mat&m?2 - The third MAT object outputis converted into the standard
OpenCV BGR format;

Mat &m3 - The fourth MAT object output is converted into the stan-
dard OpenCV BGR format

Return Value BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Copyright © SOPHGO 24

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.17 bm_status _t bmcv::resize(Mat &m, Mat &out, bool update = true, int interpolation=
BMCV _INTER NEAREST)

Function Proto-
type

bm _status t bmcv::resize(Mat &m, Mat &out, bool update = true, int
interpolation = BMCV _INTER _NEAREST)

Function

The input MAT object is scaled to the size given by the output Mat,
and the output format s the color space specified by the output Mat.
Because MAT supports the extended YUV format, the color space
supported by this interface is not limited to BGR packed.

Input Params

Mat &m - The input Mat object can be in standard BGR packed format
or extended YUV format;

bool update - Whether to synchronize cache or memory. If it is true,
the cache or PCIE card device memory will be synchronized after the
conversion is completed;

int interpolation - The scaling algorithm can be NEAREST or LINEAR
algorithm

Output Params

Mat &out - The output scaled Mat object

Return Value

BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Description

Support Gray, YUV444P, YUV420P, BGR/RGB separate, BGR/RGB
packed, ARGB packed format scaling

4.2.3.18 bm_status t bmcv::convert(Mat &m, Mat &out, bool update=true)

Function Proto-
type

bm status t bmcv::convert(Mat &m, Mat &out, bool update = true)

Function

It realizes color conversion between two mats. The difference be-
tween it and the toMat interface is that toMat can only realize color
conversion from various color formats to BGR packed, while this in-
terface can support BGR packed or YUV format to BGR packed or YUV
convert.

Input Params

Mat &m - The input Mat object can be in extended YUV format or stan-
dard BGR packed format;
bool update - Whether to synchronize cache or memory. If true, the
cache or PCIE card device memory will be synchronized after the
conversion is completed

Output Params

Mat &out - The output color-converted Mat object can be in BGR
packed or YUV format.

Return Value

BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Copyright © SOPHGO 25

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.19 bm_status t bmcv::convert(Mat &m, std:vector<Rect> &vrt, std::vector<Size> &vsz,
std::vector<Mat> &out, bool update= true, csc_type t csc=CSC_YCbCr2RGB BT601,
csc_matrix_t *matrix = nullptr, bmcv _resize _algorithm algorithm=
BMCV _INTER_LINEAR)

Function Proto-
type

bm status t bmcviconvert(Mat &m, std:ivector<Rect> = &uvrt,
std::vector<Size> &vsz, std::vector<Mat> &out, bool up-
date = true, csc_type t csc=CSC_YCbCr2RGB_BT601,
csc_matrix_t *matrix=nullptr, bmcv_resize algorithm algorithm =
BMCV _INTER LINEAR)

Function

The interface adopts the built-in VPP hardware acceleration unit,
which integrates crop, resize and csc. According to the given multi-
ple rect boxes and given multiple scaling sizes, the input Mat object
is output to multiple Mat objects, and the outputis OpenCV standard
BGR pack format or extended YUV format

Input Params

Mat &m - The input Mat object can be in extended YUV format or stan-
dard BGR packed format;

std::vector<Rect> &vrt - Multiple rect boxes, the ROl area in the in-
put Mat. The number of rectangular boxes and the number of resize
should be the same;

std::vector<Size> &vsz - Multiple resize sizes, one-to-one correspon-
dence with the rectangular box of vrt;

bool update - Whether to synchronize cache or memory. If it is true,
the cache or PCIE card device memory will be synchronized after the
conversion is completed;

csc_type_t csc - Color conversion matrix, can specify the appropri-
ate color conversion matrix according to the color space;
csc_matrix_t *matrix - When the color conversion matrixis notin the
list, an external user-defined conversion matrix can be given;
bmcv_resize_algorithm algorithm - The scaling algorithm can be
NEAREST or LINEAR algorithm

Output Params

std::vector<Mat> &out - Output scaled, cropped, and color-
converted Mat objects in standard BGR pack format or YUV format.

Return Value

BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

Description

The interface can complete the three operations of resize, crop, and
csc in one step, with the highest efficiency. Use this interface as
much as possible to improve efficiency

Copyright © SOPHGO 26

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.20 bm_status t bmcv::convert(Mat &m, std::vector<Rect> &vrt, bm _image *out, bool up-
date= true)

Function Proto-
type

bm _status t bmcv::convert(Mat &m, std::vector<Rect> &vrt, bm image
*out, bool update= true)

Function

The interface adopts the built-in VPP hardware acceleration unit,
which integrates crop, resize and csc. According to the given
multiple rect boxes, according to the size specified in multiple
bm_images, the input Mat objects are output to multiple bm_image
objects, and the output format is determined by the bm_image ini-
tialization value. Note that bm_image must be initialized by the
caller, and the number corresponds to vrt one-to-one.

Input Params

Mat &m - The input Mat object can be in extended YUV format or stan-
dard BGR packed format;

std::vector<Rect> &vrt - Multiple rect boxes, the ROl area in the in-
put Mat. The number of rectangular boxes and the number of resize
should be the same;

bool update - Whether to synchronize cache or memory. If true, the
cache or PCIE card device memory will be synchronized after the
conversion is completed

Output Params

bm_image *out - Output scaling, crop, and color-converted
bm_image objects. The output color format is determined by
the bm_image initialization value. At the same time, the initialized
size and color information contained in the bmimage parameter are
also used as input information for processing.

Return Value

BM_SUCCESS(0): successful implementation Other: failed imple-
mentation

4.2.3.21 void bmcv::uploadMat(Mat &mat)

Function Proto-
type

void bmev::uploadMat(Mat &mat)

Function

Cache synchronization or device memory synchronization interface.
When this function is executed, the content in the cache will be
flushed to the actual memory (SOC mode), or the host memory will
be synchronized to the PCIE card device memory (PCIE mode).

Input Params

Mat&mat- Theinput matobject that needs memory synchronization

OutputParams | None
Return Value None
Description Reasonably calling this interface can effectively control the number

of memory synchronizations, and only call it when needed. This is
more important in PCIE mode, because the synchronization of each
PCIE device memory is time-consuming.

Copyright © SOPHGO 27

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.22 void bmcv::downloadMat(Mat &mat)

Function Proto-
type

void bmcv::downloadMat(Mat &mat)

Function

Cache synchronization or device memory synchronization interface.
When this function is executed, the content in the cache will be in-
validated (SOC mode), or the PCIE card device memory will be syn-
chronized to the host memory (PCIE mode). The memory synchro-
nization direction of this interface is exactly opposite to the 3.21 in-
terface.

Input Params

Mat&mat-Theinput matobject that needs memory synchronization

Output Params | None
Return Value None
Description Reasonably calling this interface can effectively control the number

of memory synchronizations, and only call it when needed. This is
more important in PCIE mode, because the synchronization of each
PCIE device memory is time-consuming.

4.2.3.23 bm_status t
std::vector<Rect>& drt,

bmcv::stitch(std::vector<Mat> &in,

Mat &out, bool update =

std::vector<Rect>& srt,
true, bmcv_resize algorithm al-

gorithm = BMCV _INTER _LINEAR)

Function Proto-
type

bm status t bmecv:stitch(std::vector<Mat> &in, std::vector<Rect>
&src, std::vector<Rect> &drt, Mat &out, bool update=true,
bmcv _resize alogrithm algorithm=BMCV _INTER LINEAR)

Function

Image stitching, scaling and stitching multiple input Mats into one
Mat according to the given position

Input Params

std::vector<Mat> &in - Multiple input Mat objects, which can be in
extended YUV format or standard BGR pack format;
std::vector<Rect> &src - The display content box corresponding to
each Mat object;

std::vector<Rect> &drt - Corresponding to the display position of
each display content in the target Mat;

bool update - Whether to synchronize cache or memory. If it is true,
the cache or PCIE card device memory will be synchronized after the
conversion is completed;

bmcv_resize_algorithm algorithm - The scaling algorithm can be
NEAREST or LINEAR algorithm

Output Params

Mat &out - Output the spliced Mat object, which can be BGR packed
or YUV format

Return Value

BM_SUCCESS(0):
mentation

successful implementation Other: failed imple-

Description

For bm1684, input and output Mats only support 64-aligned stride

Copyright © SOPHGO 28

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.24 void bmcv

::print(Mat &m, bool dump = false)

Function Proto-
type

void bmev::print(Mat &m, bool dump = false)

Function

Debug interface, print the color space, width, height and data of the
input Mat object.

Input Params

Mat&m - The input Mat object can be in extended YUV format or stan-
dard BGRpacked format;

bool dump - When true, the data value in the Mat is printed, and it is
not printed by default. If true, the mat_dump.bin file will be gener-
ated in the current directory

Output Params | None
Return Value None
Description Currently supports dump OpenCV standard BGRpacked or CV_8UC1

data, as well as extended NV12, NV16, YUV420P, YUV422P, GRAY,
YUV444P and BGRSeparate format data

4.2.3.25 void bmcv::print(bm _image *image, bool dump)

Function Proto-
type

void bmev::print(bm__image *image, bool dump)

Function

Debug interface, print the color space, width, height and data of the
input bm_image object.

Input Params

bm_image *image - The input bm_image object;

bool dump - When true, the data value in Mat is printed. By default,
it is not printed. If true, a BMI- “width” x” height” .bin file will be
generated in the current directory.

Output Params

None

Return Value

None

Description

Currently supports dump BGR packed, NV12, NV16, YUV420P,
YUV422P, GRAY, YUV444P and BGR Separate format bm_image data

Copyright © SOPHGO 29

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.26 void bmcv

::dumpMat(Mat &image, const String &fname)

Function Proto-
type

void bmev::dumpMat(Mat &image, const String &fname)

Function

Debug interface, specifically dumpMat data to the specified named
file. The function is the same as the function when dump is true in
3.23.

Input Params

Mat &image - The input Mat object can be in extended YUV format or
standard BGR packed format;
const String & name - output dump filename

Output Params | None
Return Value None
Description Currently supports dump OpenCV standard BGR packed or CV_8UC1

data, as well as extended NV12, NV16, YUV420P, YUV422P, GRAY,
YUV444P and BGR Separate format data

4.2.3.27 void bmcv::dumpBMImage(bm _image *image, const String &fname)

Function Proto-
type

void bmcv::dumpBMImage(bm image *image, const String &fname)

Function

Debug interface, specifically dump bm_image data to the specified
named file. The function is the same as the function when dump is
truein 3.25.

Input Params

bm_image *image - input bm_image object;
const String & name - output dump filename

Output Params | None
Return Value None
Description Currently supports dump BGR packed, NV12, NV16, YUV420P,

YUV422P, GRAY, YUV444P and BGR Separate format bm_image data

Copyright © SOPHGO 30

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.28 bool Mat::avOK()

Function Proto-

bool Mat::avOK()

type

Function Determine whether the current Mat is in extended YUV format
Input Params None

Output Params | None

Return Value

true - Indicates that the current Mat is in extended YUV format
false - Indicates that the current Mat is in standard OpenCV format

Description

Combined with interface 3.21 3.22 downloadMat and uploadMat, it
can effectively manage memory synchronization.

Generally, a Mat whose avOK is true has the latest physical memory
or PCIE card device memory, and a Mat whose avOK is false has the
latest data in its cache or host memory. You can decide whether to
call uploadMat or downloadMat based on this information.

If it is always working through the hardware acceleration unit in de-
vice memory, memory synchronization can be omitted and down-
loadMat is called only when it needs to be swapped into system
memory.

4.2.3.29 int Mat::avCols()

Function Proto-

int Mat::avCols()

type

Function Get the width of Y in YUV extended format
Input Params None

Output Params | None

Return Value

Returns the Y width in extended YUV format, or 0 if it is in standard
OpenCV Mat format

4.2.3.30 int Mat::avRows()

Function Proto-

int Mat::avRows()

type

Function Get the height of Y in YUV extended format
Input Params None

Output Params | None

Return Value

Returns the Y height in extended YUV format, or 0 if it is in standard
OpenCV Mat format

Copyright © SOPHGO 31

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.31 int Mat::avFormat()

Function Proto-

int Mat::avFormat()

type

Function Get YUV format information
Input Params None

Output Params | None

Return Value

Returns extended YUV format information, if it is standard OpenCV
Mat format, returns 0

4.2.3.32 int Mat::avAddr(int idx)

Function Proto-

int Mat::avAddr(int idx)

type

Function Get the physical address of each component of YUV
Input Params | intidx - Specifies the order number of the YUV plane
Output Params | None

Return Value

Returns the physical head address of the specified plane, if it is in
standard OpenCV Mat format, returns 0

4.2.3.33 int Mat::avStep(int idx)

Function Proto-
type

int Mat::avStep(int idx)

Function

Get the line size of the specified plane in YUV format

Input Params

int idx - Order number of the specified YUV plane

Output Params

None

Return Value

The line size of the specified plane, if it is in standard OpenCV Mat
format, return 0

Copyright © SOPHGO 32

CHAPTER 4. MULTIMEDIA USER GUIDE

Copyright © SOPHGO

33

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.34 AVFrame* av::create(int height, int width, int color format, void *data, long addr, int fd,
int* plane_stride, int* plane _size, int color space = AVCOL SPC_BT709, int color _range
= AVCOL_RANGE _MPEG, int id = 0)

Function Prototype AVFrame* av::create(int height, int width, int clor format, void
data, long addr, int fd, int plane_stride, int* plane_size, int
color space = AVCOL SPC BT709, int color range = AV-
COL_RANGE_MPEG, int id = 0)

Function AVFrame creation interface, allowing external creation of sys-
tem memory and physical memory, the created format is
compatible with the AVFrame definition in FFMPEG

Input Params int height - The height of the created image data;

int width - The width of the created image data;

int color_format - The format of the created image data, see
the FFMPEG pixfmt.h definition for details;

void *data - System memory address. When it is null, it
means that the interface creates its own management;

long addr - Device memory address;

int fd - Handle to the device memory address. If it is -1, it
means that the device memory is allocated internally, other-
wise it is given by the addr parameter. In pcie mode, if the
device memory is given externally, the value can be set to 0,
in soc mode, the value should be the handle of ion memory.
int* plane_stride - Array of stride per row for each layer of
image data;

int* plane_size - The size of each layer of the image data;
int color_space - The color space of the input image can
be AVCOL_SPC_BT709 or AVCOL_SPC_BT470, see the def-
inition in FFMPEG pixfmt.h for details, the default is AV-
COL_SPC_BT709;

intcolor_range - The colordynamic range of theinputimage,
which can be AVCOL_RANGE_MPEG or AVCOL_RANGE_JPEG,
see the definition in FFMPEG pixfmt.h for details, the default
is AVCOL_RANGE_MPEG;

intid - Specified device card number and the flag of the HEAP
location, see 5.1 for details, the default value of this parame-

terisO

Output Params None

Return Value AVFrame structure pointer

Description 1.This interface supports the creation of AVFrame data struc-
tures in the following image formats: AV_PIX_FMT_GRAYS,
AV_PIX_FMT_GBRP, AV_PIX_FMT_YUV420P,

AV_PIX_FMT_NV12, AV_PIX_FMT_YUV422P horizontal,
AV_PIX_FMT_YUV444P, AV_PIX_FMT_NV16

2.When both the device memory and the system memory
are given externally, in soc mode, the external address must
match, that is, the system memory is the virtual address
mappeélofroplw ﬁ?%cﬁ%(Jgemory; when the device mems
ory is glvgr}/et%terna y, the system memory is null; when the
device memory is not provided and the system memory is
also null, the interface will automatically create the internal
memory; when the device memory is not provided and the
system memory is provided externally, the interface will cre-

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.35 AVFrame* av::create(int height, int width, int id = 0)

Function Proto-
type

AVFrame* av::create(int height, int width, int id = 0)

Function

Simple creation interface of AVFrame, all memory is created and
managed internally, only supports YUV420P format

Input Params

int height - The height of the created image data;

int width - The width of the created image data;

int id - Specified device card number and the flag of the HEAP loca-
tion, see 5.1 for details, this parameter defaults to 0

Output Params | None
Return Value AVFrame structure pointer
Description This interface only supports the creation of AVFrame data structures

in YUV420P format

4.2.3.36 int av::copy(AVFrame *src, AVFrame *dst, int id)

Function Proto-
type

int av::copy(AVFrame *src, AVFrame *dst, int id)

Function

The deep copy function of AVFrame, copies the valid image data of
src to dst

Input Params

AVFrame *src - input AVFrame raw data pointer;
intid - Specified device card number, see 5.1 for details

Output Params

AVFrame *dst - Output AVFrame target data pointer

Return Value

Returns the number of valid image data for copy, if it is 0, no copy
occurs

Description

1 Thisinterface only supports the copy of image data in the same de-
vice card number, that is, the id is the same

2.Theidinthefunction only needs to specify the device card number,
no other flags are required

Copyright © SOPHGO 35

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.37 int av::get _scale _and _plane(int color format, int wscale[], int hscale[])

Function Proto-
type

int av::get scale _and plane(int color format, int wcalel[], int hscalel[])

Function

Get the aspect ratio of the specified image format relative to
YUV444P

Input Params

int color_format - Specify the image format, see the definition in
FFMPEG pixfmt.h for details

Output Params

int wscale[] - Corresponding format relative to the width ratio of
each layer of YUV444P;
int hscale[] - Corresponding format relative to the height ratio of
each layer of YUV444P

Return Value

Returns the number of plane layers for the given image format

Description

4.2.3.38 cv::Mat(AVFrame *frame, int id)

Function Proto-
type

cv::Mat(AVFrame *frame, int id)

Function

Added Mat constructor interface. Construct extended YUV Mat data
based on AVFrame pointer information

Input Params

AVFrame *frame - AVFrame data, which can be created from FFMPEG
or cv::av;

int id - The specified PCIE device card number and
AVFRAME_ATTACHED flag, see 5.1 for details

Output Params | Constructed extended Mat data type
Return Value None
Description When the AVFRAME_ATTACHED flag is 1, it means that the frame is

created and released externally and does not need Mat to be man-
aged; otherwise, the memory block pointed to by the frame is re-
leased when the Mat is released

Copyright © SOPHGO 36

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.39 cv::Mat(int height, int width, int total, int _type, const size_t* _steps, void* _data, unsigned
long addr, int fd, SophonDevice device=SophonDevice())

Function Proto- | cvi:Mat(int height, int width, int total, int _type, const size t*

type _steps, void* data, unsigned long addr, int fd, SophonDevice de-
vice=SophonDevice())
Function Added Mat constructor interface. Opencv standard format or ex-

tended YUV Mat format can be created, and both system memory
and device memory are allowed to be given by external allocation
Input Params | int height - the height of the input image data;

int width - the width of the input image data;

int total - The size of the memory, which can be the internal memory
to be allocated, or the size of the external allocated memory;

int _type - Mat type, this interface only supports CV_8UC1 or
CV_8UC3, the format _type of the extended YUV Mat is always
CV_8UC1;

const size_t *steps - The step information of the created image data,
if the pointeris null, itis AUTO_STEP;

void *_data - System memory pointer, if null, the memory is allo-
cated internally;

unsigned long addr - Device physical memory address, any value is
considered a valid physical address;

int fd - The handle corresponding to the physical memory of the de-
vice. If negative, device physical memory is allocated internally;
SophonDevice device - The specified device card number and the
sign of the HEAP location, see 5.1 for details, this parameter defaults
to0

Output Params | Constructed standard BGR or extended YUV Mat data type

Return Value None

Description 1.SophonDevice is a type introduced to avoid function matching er-
rors caused by C++implicit type matching. SophonDevice(intid) can
be used to convert directly from the ID in section 5.1

2.When both the device memory and the system memory are given
externally, in the soc mode, the external address of the two must be
matched, that is, the system memory is the virtual address mapped
from the device memory; when the device memory is given exter-
nally, the system memory is null When the device memory is not
provided and the system memory is also null, the interface will au-
tomatically create the internal memory; when the device memory is
not provided and the system memory is provided externally, the in-
terface will create. The Mat only has system memory in soc mode,
and automatically creates device memory in pcie mode

Copyright © SOPHGO 37

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.40 Mat::Mat(SophonDevice device)

Function Proto-
type

Mat::Mat(SophonDevice device)

Function

The newly added Mat construction interface, specifying that the sub-
sequent operations of the Mat are on the given device device

Input Params

SophonDevice device - The specified device card number and the
sign of the HEAP location, see 5.1 for details

Output Params | Declared Mat data type
Return Value None
Description 1.This constructoronly initializes the device indexinside the Mat, and

does not actually create memory

2.The biggest function of this constructor is that for some internal
create memory functions, the device number and HEAP location for
creating memory can be specified in advance through this construc-
tor, so as to avoid allocating a large amount of memory on the de-
fault device number 0

4.2.3.41 void Mat::create(AVFrame *frame, int id)

Function Proto-
type

void Mat::create(AVFrame *frame, int id)

Function

The interface for Mat to allocate memory, construct the extended
YUV Mat memory according to the AVFrame pointer information

Input Params

AVFrame *frame - AVFrame data, which can be created from FFMPEG

or cv::av,
int id - Specified PCIE device card number and the
AVFRAME_ATTACHED flag, see 5.1 for details

Output Params | None

Return Value None

Description 1.When the AVFRAME_ATTACHED flag is 1, it means that the frame is

created and released externally and does not need Mat to be man-
aged; otherwise, the memory block pointed to by the frame is re-
leased when the Mat is released

2.When the original Mat has allocated memory, if the memory meets
the requirements of AVFrame, the memory will be reused, otherwise
the original memory will be automatically released and re-allocated

Copyright © SOPHGO 38

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.42 void Mat::create(int height, int width, int total, int _type, const size_t* _steps, void* _data,
unsigned long addr, int fd, int id = 0)

Function Proto-
type

void Mat::create(int height, int width, int total, int type, const size t*
__steps, void* _data, unsigned long addr, int fd, int id = 0)

Function

Mat’ s allocation memory interface, which allows both system
memory and device memory to be given by external allocation, and
can also be allocated internally.

Input Params

int height - The height of the input image data;

int width - The width of the input image data;

int total - Size of the memory, which can be the internal memory to
be allocated, or the size of the external allocated memory;

int _type - Mat type, this interface only supports CV_8UC1 or
CV_8UC3, the format _type of the extended YUV Mat is always
CV_8UC1,;

const size_t *steps - The step information of the created image data,
if the pointer is null, itis AUTO_STEP;

void *_data - System memory pointer, if null, the memory is allo-
cated internally;

unsigned long addr - Device physical memory address, any value is
considered a valid physical address;

int fd - The handle corresponding to the physical memory of the de-
vice. If negative, device physical memory is allocated internally;
intid - The specified device card number and HEAP location flag, see
5.1 for details, this parameter defaults to 0

OutputParams | None
Return Value None
Description 1.The extended memory allocation interface, the mainimprovement

purpose is to allow the external specified device physical memory,
when the device or system memory is created by the external, the ex-
ternal must be responsible for the release of the memory, otherwise
it will cause memory leaks

2.When both the device memory and the system memory are given
externally, in the soc mode, the external address of the two must be
matched, that is, the system memory is the virtual address mapped
from the device memory; when the device memory is given exter-
nally, the system memory is null; when the device memory is not
provided and the system memory is also null, the interface will au-
tomatically create the internal memory; when the device memory
is not provided and the system memory is provided externally, the
interface will create The Mat only has system memory in soc mode,
and automatically creates device memory in pcie mode

Copyright © SOPHGO 39

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.3.43 void VideoWriter::write(InputArray image, char *data, int *len)

Function Proto-
type

void VideoWriter::write(InputArray image, char *data, int len)

Function

Added video encoding interface. Different from the OpenCV stan-
dard VideoWriter::write interface, it provides the function of out-
putting the encoded video data to the buffer for subsequent process-

ing

Input Params

InputArray image - Input image data Mat structure

Output Params

char *data - output encoded data cache;
int *len - output encoded data length

Return Value

None

4.2.3.44 virtual bool VideoCapture::grab(char *buf, unsigned int len _in, unsigned int *len _out);

Function Proto-
type

bool VideoCapture::grab(char *buf, unsigned int len in, usigned int
*len _out);

Function

Added stream decoding interface. Different from the OpenCV stan-
dard VideoWriter::grab interface, it provides the function of out-
putting the video data before decoding to buf.

Input Params

char *buf - Memory allocated and freed externally.
unsigned int len_in - Size of the buf.

Output Params

char *buf - Output the video data before decoding.
int *len_out - The actual size of the output buf.

Return Value

true - the stream decoding is successful;
false - the stream decoding is failed.

4.2.3.45 virtual bool VideoCapture::read _record(OutputArray image, char *buf, unsigned int len_in,
unsigned int *len out);

Function Proto-
type

bool VideoCapture::read _record(OutputArray image, char *buf, unsigned
int len _in, unsigned int *len out);

Function

Added read stream video interface. It provides the function of out-
putting the video data before decoding to buf, and outputting the
decoded data to image.

Input Params

char *buf - Memory allocated and freed externally.
unsigned int len_in - Size of the buf.

Output Params

OutputArray image - Output decoded video data.
char *buf - Output the video data before decoding.
int *len_out - The actual size of the output buf.

Return Value

true - the stream decoding is successful;
false - the stream decoding is failed.

Copyright © SOPHGO 40

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.4 OpenCV Extension for Hardware JPEG Decoder

In BM168x series processors, JPEG hardware codec module is provided. To use these
hardware modules, the SDK software package extends the API functions related to JPEG
image processing in OpenCV, such as: cv:iimread(), cv:iimwrite(), cv::imdecode(), cv::
iencode() etc. When you use these functions for JPEG encoding and decoding, the func-
tions will automatically call the underlying hardware acceleration resources, thus greatly
improving the efficiency of encoding and decoding. If you want to keep the original
OpenCV API usage of these functions, you can skip this section; but if you still want to
learn about the simple and easy-to-use extension functions we provide, this section may
be very helpful to you.

4.2.4.1 Output Image Data in YUV Format

The native cv::imread() and cv::imdecode() API functions of OpenCV perform the decod-
ing operation of JPEG images and return a Mat structure. The Mat structure stores the
image data in BGR packed format, which can be regarded as an extensible API. The func-
tion function can return the original YUV format data after the JPEG image is decoded.
The usage is as follows:

When the second parameter flags of these two functions is set to cv::IMREAD_AVFRAME, it
means that data in YUV format is stored in the Mat structure out returned after decoding.
The specific format of YUV data depends on the image format of the JPEG file. When
flags is set to other values or omitted, it means decoding and outputting Mat data in
OpenCV’ s native BGR packed format. The description of the extended data format of
the input and output of the decoder is shown in the following table:

Input Image format Input YUV format FFMPEG corresponding for-
mat

1400 1400 AV_PIX_FMT_GRAY8

1420 NV12 AV_PIX_FMT_NV12

1422 NV16 AV_PIX_FMT_NV16

1444 1444 planar AV_PIX_FMT_YUV444p

The specific FFmpeg format corresponding to the current data can be obtained through
the Mat::avFormat() extension function. You can use the Mat::avOK() extension function
to know whether the out returned by cv::imdecode(buf, cv::IMREAD_AVFRAME, &out) de-
coding is the Mat data format extended by SOPHGO.

In addition, when the cv::IMREAD_RETRY_SOFTDEC flag is added to the flags in these
two interfaces, it will try to switch the software decoding when the hardware de-
coding fails. This function can also be achieved by setting the environment variable
OPENCV_RETRY_SOFTDEC=1.

Copyright © SOPHGO 41

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.4.2 List of Functions Supporting YUV Format

At present, SOPHGO Opencv has supported the function interface list of YUV Mat ex-
tended format as follows:

Video decoding class interface
- Member functions of the VideoCapture class

Such member functions, such as read and grab, use the hardware acceleration
of the BM168x series for the commonly used HEVC and H264 video formats,
and support the YUV Mat extension format.

Video encoding class interface
- Member functions of the VideoWriter class

Such member functions, such as write, have used the hardware acceleration
of the BM168x series for the commonly used HEVC and H264 video formats,
and support the YUV Mat extension format.

JPEG encoding class interface
JPEG decoding class interface

Imread

Imwrite

Imdecode

Imencode

The above interfaces have used the hardware acceleration function of the
BM168x series when processing the JPEG format, and support the YUV Mat
extension format.

Image processing class interface
- cvtColor
- resize

These two interfaces support YUV Mat extended format in BM168x series SOC
mode and are optimized with hardware acceleration.

In particular, it should be noted that the cvtColor interface only supports
hardware acceleration and YUV Mat format when YUV is converted to BGR
or GRAY output, that is, only the input is in YUV Mat format, and hardware
acceleration is performed, and the output does not support YUV Mat for-
mat.

In PCIE mode, considering the strong processor performance of the server, the
original opencv native processing method is still used, and the YUV extension
format is not supported.

line

Copyright © SOPHGO 42

CHAPTER 4. MULTIMEDIA USER GUIDE

rectangle
circle
putText

The above four interfaces all support the YUV extension format. Note that
these four interfaces do not use hardware acceleration, but use the proces-
sor’ ssupport for the YUV Mat extension format.

Basic operation class interface
- Part of the Mat class interface

* Create release interface: create, release, Mat declaration interface

* Memory assignment interface: clone, copyTo, cloneAll, copyAllTo, as-

signTo, operator =,

* Extended AV interface: avOK, avComp, avRows, avCols, avFormat, avStep,

avAddr

The above interfaces all support the YUV extension format, especially the
copyTo and clone interfaces are accelerated by hardware.

Extended class interface
- Bmcv interface: see opencv2/core/bmcv.hpp for details
- AvFrame interface: see opencv2/core/av.hpp for details

The above SOPHGO extension class interfaces all support the YUV Mat exten-
sion format and are optimized for hardware accelerated processing.

Note: The interface supporting the YUV Mat extension format is not equiv-
alent to using hardware acceleration, and some interfaces are imple-
mented through processor processing. Pay special attention to this.

4.2.5 Specify the PCIE Device to Run Hardware Acceleration

This section applies to VideoCapture, Imread, Imwrite and other interfaces of image

codec.

4.2.5.1 Definition of ID Parameter

The ID parameteris a 32-bitinteger, which defines the pcie device card and some memory

expansion flag information. The specific definitions are as follows:

Copyright © SOPHGO

43

CHAPTER 4. MULTIMEDIA USER GUIDE

Bit Field Description

Bit0-7 Describes the card number of the PCIE device, the macro definition
BM_CARD_ID(id) can get this information

Bit8-10 Describes the HEAP memory location on the corresponding PCIE
card.
When Bit8 is 1, it means that the hardware memory is allocated on
heap0;

When Bit9 is 1, it means that the hardware memory memory is allo-
cated on heapl;

When Bit10 is 1, it means that the hardware memory memory is al-
located on heap2;

If Bit8-10is all 0, it is allocated on heap1l by default;

The memory locations of Heap0/1/2 are detailed in the BMLIB API

manual.
The macro definition BM_CARD_HEAP(id) can get this information.
Bit11-20 Describes Mat’ s memory extension flags.

B11-B18 is defined by the opencv standard, see MemoryFlag enu-
meration type

B19- is the extended DEVICE_MEM_ATTACHED, marking the device
memory as external management, does not need Opencv to manage
the release

B20- is an extended AVFRAME_ATTACHED, which marks the AVFrame
that creates the YUV Mat for external management, and does not re-
quire Opencv to manage the release.

The macro definition BM_CARD_MEMFLAG(id) can get this informa-
tion

B21-31 Reserved extension

Description: The macro definition BM_MAKEFLAG(attach, heap, card) can be used
to generate a complete ID definition, where attach corresponds to
B11-20, heap corresponds to B8-10, and card corresponds to BO-7

4.2.5.2 Specify the PCIE Device Using the ID Parameter

In PCIE mode, in the case of multiple devices, it is necessary to specify the hardware
acceleration function to run on a specific card. To meet this need, SOPHGO OpenCV has
extended the VideoCapture::Open, imread, imdecode and mat.create interfaces, adding
the intid parameter.

bool VideoCapture::open(const String& filename, int apiPreference, int id)
Mat imdecode(InputArray _buf, int flags, intid)

Mat imread(const String& filename, int flags, int id)

void Mat::create(int d, const int* _sizes, int _type, intid)

By specifying id, video decoding and picture decoding can be specified to run on the

Copyright © SOPHGO 44

CHAPTER 4. MULTIMEDIA USER GUIDE

specified PCIE device, and the decoded Mat output records the order number of the PCIE
card device. Subsequent hardware-accelerated operations will continue to run on the
specified PCIE device.

For most interfaces whose input is Mat, because Mat has specified the device number
when calling the create interface to allocate memory, there is no need to add additional
parameters to specify the PCIE card device. Accelerated processing can be performed on
the corresponding device according to the device number built into Mat.

4.2.6 The Calling Principles of OpenCV and BMCV API

The BMCV APl makes full use of the acceleration capability of the hardware unit in the
BM168x series processors, which can improve the efficiency of data processing. The
OpenCV software provides very rich image and graphics processing capabilities. The or-
ganic combination of the two enables users to develop not only the rich function library
of OpenCV, but also the acceleration of hardware-supported functions. This is the main
purpose of this section.

In the process of switching between BMCV APl and OpenCV functions and data types,
the most important thing is to avoid data copying as much as possible to minimize the
switching cost. Therefore, the following principles should be followed in the calling pro-
cess.

1) To switch from OpenCV Mat to BMCV API, you can use the toBMI() function, which
converts the data in the Mat into the bm_image type required by the BMCV API call
in a zero-copy manner.

2) When the BMCV API needs to switch to OpenCV Mat, the last step should be imple-
mented through the bmcv function in OpenCV. This not only completes the required
image processing operations, but also completes the data type preparation for sub-
sequent OpenCV operations. Because OpenCV generally requires the color space of
BGR Pack, the toMat() function is generally used as the last step before switching.

3) Generally, the data processed by the neural network is RGB planar data without
padding, and there are specific requirements for the input size. Therefore, it is rec-
ommended to use the resize() function as the last step before calling the neural
network NPU interface.

4) When the three operations of crop, resize, and color conversion are continuous, it is
strongly recommended that customers use the convert() function, which can obtain
ideal benefits in both bandwidth optimization and speed optimization. Even if a
subsequent copy may be required, the cost is worth it because the copy occurs on
the scaled image.

Copyright © SOPHGO 45

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.7 Introduction to National Standard GB28181 Interface in OpenCV

SOPHGO reuses the native Cap interface of OpenCV, and provides the playback support
of GB28181 by extending the url definition. Therefore, users do not need to be familiar
with the interface again, as long as they understand the extended url definition, they can
play GB28181 video consistently like rtsp video.

Note: The SIP proxy registration steps in the national standard need to be managed by
the user. When the front-end device list is obtained, it can be played directly by url.

4.2.7.1 General Steps Supported by National Standard GB28181

Start SIP proxy (usually deployed by the customer or provided by the platform)
Customer’ s subordinate application platform registered to SIP proxy

The client application gets the list of front-end devices as shown below. Among
them, 34010000001310000009 etc. are the 20-bit codes of the device.

{ “devidelist” :

[{ “id” : “34010000001310000009” }

{ “id” : “34010000001310000010” }

{ “id” : “34020000001310101202” }]}

Organize the GB28181 url to directly call the OpenCV Cap interface for playback

4.2.7.2 GB28181 Url Format Definition

UDP Real-time Stream Address Definition

gb28181://34020000002019000001:123456@35.26.240.99:56667deviceid
=34010000001310000009#localid=12478792871163624979%localip=172.
10.18.201#localmediaport=20108:

gb28181://34020000002019000001:123456@35.26.240.99:5666?deviceid
=34010000001310000009#localid=124787928711636249794#localip=172.
10.18.201#localmediaport=20108:

Hint

34020000002019000001:123456@35.26.240.99:5666:

sip server GB code: sip server password@sip server ip address: sip server port

Copyright © SOPHGO 46

mailto:123456@35.26.240.99
mailto:password@sip

CHAPTER 4. MULTIMEDIA USER GUIDE

deviceid:

Front-end device 20-bit code
localid:

Local 20-bit code, optional
localip:

Local ip, optional
localmediaport:

The video stream port of the media receiving end needs to be mapped to two ports
(rtp:11801, rtcp:11802), and the in and out of the two port mappings must be the same.
The same core board port cannot be repeated.

UDP Playback Stream Address Definition

gb28181_playback://34020000002019000001:123456@35.26.240.99:5666?deviceid
=35018284001310090010#devicetype=3#localid=12478792871163624979%localip=
172.10.18.201#localmediaport=20108#begtime=20191018160000#endtime
=20191026163713:

gb28181_playback://34020000002019000001:123456@35.26.240.99:5666?deviceid
=35018284001310090010#devicetype=3#localid=12478792871163624979%localip=
172.10.18.201#localmediaport=20108#begtime=20191018160000#endtime
=20191026163713:

Hint

34020000002019000001:123456(@35.26.240.99:5666:

sip server GB code: sip server password@sip server ip address: sip server port
deviceid:

Front-end device 20-bit code

devicetype:

Video storage type

localid:

Local 20-bit code, optional

localip:

Local ip, optional

Copyright © SOPHGO 47

mailto:123456@35.26.240.99
mailto:123456@35.26.240.99
mailto:123456@35.26.240.99
mailto:password@sip

CHAPTER 4. MULTIMEDIA USER GUIDE

localmediaport:

The video stream port of the media receiving end needs to be mapped to two ports
(rtp:11801, rtcp:11802), and the in and out of the two port mappings must be the same.

The same core board port cannot be repeated.
begtime:

Recording start time

endtime:

Recording end time

TCP Real-time Stream Address Definition

gb28181://34020000002019000001:123456@35.26.240.99:5666?deviceid
=35018284001310090010#localid=12478792871163624979%#localip=172.10.18.201:

gh28181://34020000002019000001:123456@35.26.240.99:5666?deviceid
=35018284001310090010#localid=12478792871163624979%#localip=172.10.18.201:

Hint

34020000002019000001:123456@35.26.240.99:5666:

sip server GB code: sip server password@sip server ip address: sip server port
deviceid:

Front-end device 20-bit code

localid:

Local 20-bit code, optional

localip:

Local ip, optional

TCP Playback Stream Address Definition

gb28181_playback://34020000002019000001:123456@35.26.240.99:5666?deviceid
=35018284001310090010#devicetype=3#localid=12478792871163624979%localip=
172.10.18.201#begtime=20191018160000#endtime=20191026163713:

gh28181_playback://34020000002019000001:123456@35.26.240.99:5666?deviceid

Copyright © SOPHGO

48

mailto:123456@35.26.240.99
mailto:password@sip
mailto:123456@35.26.240.99
mailto:123456@35.26.240.99

CHAPTER 4. MULTIMEDIA USER GUIDE

=35018284001310090010#devicetype=3#localid=12478792871163624979%localip=
172.10.18.201#begtime=20191018160000#endtime=20191026163713:

Hint
34020000002019000001:123456@35.26.240.99:5666:
sip server GB code: sip server password@sip server ip address: sip server port
deviceid:

Front-end device 20-bit code

devicetype:

Video storage type

localid:

Local 20-bit code, optional

localip:

Local ip, optional

begtime:

Recording start time

endtime:

Recording end time

4.2.8 BMCPU OPENCV Acceleration in PCIE Mode

4.2.8.1 Concept Introduction

Opencv has a large number of image processing functions implemented on the host pro-
cessor, so in the PCIE environment, there is a need to exchange and synchronize memory
between the host and the board device, and the speed of this memory synchronization is
much slower than that of the memory cache. The speed of data synchronization creates
a bottleneck for application development in the PCIE environment. And each SOC on
our BM168x board has a powerful ARM Cortex A53 processor resource, which is currently
idlein the PCIE environment, so BMCPU Opencyv tries to map the functions between Host
Opencv and Device Opencyv, The operation of Host Opencv is actually implemented with
the operation of Device Opencv to ensure that all data are performed in Device Memory,
Therefore, there is no need to exchange PCIE with the host, thereby reducing the pres-
sure on the host processor and the processing performance requirements of the proces-
sor processor on the one hand, and improving the running speed and eliminating the
bottleneck caused by the PCIE bandwidth on the other hand.

Copyright © SOPHGO 49

mailto:123456@35.26.240.99
mailto:password@sip

CHAPTER 4. MULTIMEDIA USER GUIDE

The function usage of BMCPU OPENCV is exactly the same as that of native OPENCYV, ex-
cept that the prefix “bmcpu_” is added in front of it.

4.2.8.2 Instructions for Use

Note 1. For all interfaces modified with BMCPU OPENCV, the latest data is located in
the device memory.

This is different from the previous opencv cache management strategy. Pre-
viously, in YUV Mat, the latest data was located in device memory, while in
RGB Mat, the latest data was located in host memory. After the introduction
of BMCPU OPENCV, when the function supports a sufficient number, we will
use the device memory in PCIE mode, regardless of RGB Mat or YUV Mat, so
that all the memory operated by pcie opencv is moved to the device memory,
does not occupy host memory.

Before reaching this goal, in order to be compatible with the call of the
original opencv function, keep the original function, and then uniformly
addthe “bmcpu_” prefixtorenamethe modified function.You can query
our list of completed functions to do the corresponding operation.

For the functions in the list, no matter the latest data of yuv Mat or RGB Mat
is in device memory. When users need to synchronize it to the host memory,
they need to manually call the bmcv::downloadMat() interface. When users
need to synchronize the data in the host memory to the device memory, they
need to call the bmcv::uploadMat() interface.

This is especially important. Before calling the modified function, if the lat-
est data is in host memory, it needs to be synchronized to device mem-
ory.This is especially easy to ignore when Mat is initialized with func-
tions such as Scalar::all(), Zeros(), Ones(), etc. At this time, remem-
ber to call bmcv::uploadMat() to synchronize the initialization to the
device memory.Conversely, when the function ends and the subsequent
processing needs to be performed in the host memory, it needs to call
bmcv::downloadMat() to download it.

When the input and output Mat does not have device memory, the function
will automatically synchronize to the host memory and release the internally
created device memory.

Note 2. When passing parameters, the parameters related to Mat are required to be
placed at the top. Because the memory structure of Mat is allocated in advance, it
can only be modified and cannot be reallocated.

Note 3. List of completed functions

Copyright © SOPHGO 50

CHAPTER 4. MULTIMEDIA USER GUIDE

Completed function interfaces

Modified function

Description

cv::calcOpticalFlowPyrLK()

cv::bmcpu_calcOp
ticalFlowPyrLK()

Sparse optical flow func-
tion, supports standard
BGR Mat format

cv::calcOpticalFlowFarnebacky:: bmcpu_calcOptica | Dense optical flow func-
[FlowFarneback() tion, supports standard
BGR Mat format
cv::gaussianBlur() cv::bmcp u_gaussianBlur() | Support BGR Mat format
cv::bilateralFilter() cvi:bmcpu_b ilateralFil- | Support BGR Mat format

ter()

cv::boxFilter() cv::b mcpu_boxFilter() Support BGR Mat format
cv::calcHist() cv:: bmcpu_calcHist() There are three function
types in the calcHist func-
tion, both of them are sup-
ported except that Sparse-
Mat does not.
cv::warpAffine() cv::bm cpu_warpAffine() Support BGR Mat format
cv::sobel() c vi:bmcpu_sobel() Support BGR Mat format
cv::erode() cv::bmcpu_erode() Support BGR Mat format
cv::dialet() cv ::bmcpu_dialet() Support BGR Mat format
cv::morphologyEx cv::bmcp Support BGR Mat format

u_morphologyEx()

cv::line()

cv::bmcpu_line()

The line drawing function
in Opencv supports both
YUV and RGB Mat. Support
YUV420P formatin YUV

cv::putText()

cv: :bmcpu_putText()

Both YUV and RGB Mat
are supported. Support
YUV420P format in YUV

cv:irectangle()

cv::b mcpu_rectangle()

Both YUV and RGB Mat
are supported. Support
YUV420P format in YUV

cv::circle()

cv ::bmcpu_circle()

Both YUV and RGB Mat
are supported. Support
YUV420P format in YUV

Copyright © SOPHGO

continues on next page

51

CHAPTER 4. MULTIMEDIA USER GUIDE

Table 4.1 — continued from previous page

Completed function interfaces

Modified function

Description

cv:ellipse()

cv: :bmcpu_ellipse()

1.Corresponds to the
function in OPENCV:void
ellipse(InputOutput Array
_img, Point center, Size
axes,double angle,double
start_angle,double
end_angle,const Scalar
& color,int thickness,int
line_type,int shift)

2.Both YUV and RGB Mat
are supported. Support
YUV420P format in YUV

cv::ellipse()

cv:: bmcpu_ellipse2()

1.Corresponds to the
function in OPENCV:void
ellipse(InputOutput Ar-
ray _img, const Rotate-
dRect& box, const Scalar
& color,int thickness, int
lineType)

2.Both YUV and RGB Mat
are supported. Support
YUV420P format in YUV

cv::polylines()

cv::b mcpu_polylines()

Both YUV and RGB Mat
are supported. Support
YUV420P format in YUV

FreeType2::loadFontData()

cv::bmcep
u_loadFontData()

Corresponds to FreeType2
loading font library

cv::bmcpu_unloadFontData

(Release font resources and
call it in pairs with bm-
cpu_loadFontData

FreeType2::setSplitNumber

)cvi:bmcpu_setSplitNumber

)Ft2 class interface

FreeType2::getTextSize()

cv::bmc pu_getTextSize()

Ft2 class interface

FreeType2::putText()

cv::bmc pu_ft2_putText()

Both YUV and RGB Mat are
supported

Copyright © SOPHGO

52

CHAPTER 4. MULTIMEDIA USER GUIDE

4.2.9 Code Example

For code examples, see examples/multimedia in the bmnnsdk2 package.

4.3 SOPHGO FFMPEG User Guide

4.3.1 Preface

In the BM168x series processor, there is an 8-core A53 processor, and it also has built-in
video and image related hardware acceleration modules. Interfaces to these hardware
modules are provided in the FFMPEG SDK development kit provided by SOPHGO. Among
them, through these hardware interfaces, the following modules are provided: hardware
video decoder, hardware video encoder, hardware JPEG decoder, hardware JPEG en-
coder, hardware scale filter, hwupload filter, hwdownload filter.

The FFMPEG SDK development kit complies with the FFMPEG hwaccel writing specifica-
tion, implements the video transcoding hardware acceleration framework, and imple-
ments functions such as hardware memory management and the organization of each
hardware processing module process. At the same time, the FFMPEG SDK also provides
an interface compatible with common processor decoders to match the usage habits of
some users. We call these two sets of interfaces the HWAccel interface and the general
interface. They share the BM168x hardware acceleration module at the bottom and are
the same in performance. The only difference is that 1) HWAccel needs to initialize the
hardware device 2) The HWAccel interface is only for device memory, while the general
interface allocates both device memory and system memory 3) There are slight differ-
ences in their parameter configuration and interface calls.

In the following description, unless otherwise specified, it applies to both the general
interface and the HWAccel interface.

4.3.2 Hardware Video Decoder

The BM168x series supports H.264 and H.265 hardware decoding. The hardware decoder
performance details are described in the table below.

Standard Profile Level Max R eso- | Min R esolu- | Bit rate
lution tion

H.264/AVC | BP/CBP/MP/HP 4.1 8192x4096 | 16x16 50Mbps

H.265/HEVC Main/Mainl0 L5.1 8192x4096 | 16x16 N/A

In SOPHGO FFMPEG release package, the name of the H.264 hardware video decoder is
h264_bm, and the name of the H.265 hardware video decoder is hevc_bm. The following
commands can be used to query the encoders supported by FFMPEG.

Copyright © SOPHGO 53

CHAPTER 4. MULTIMEDIA USER GUIDE

$ ffmpeg -decoders | grep _bm

4.3.2.1 Options Supported by Hardware Video Decoder

In FFMPEG, the hardware decoder of BM168x series provides some additional options,
which can be queried by the following commands.

S ffmpeg -h decoder=h264_bm
$ ffmpeg -h decoder=hevc_bm

These options can be set using the av_dict_set API. A proper understanding of these op-
tions is required before setting. These options are explained in detail below.

output_format:
The format of the output data.

Set to 0 to output linearly arranged uncompressed data; set to 101 to output com-
pressed data.

Default valueis 0.

The recommended setting is 101 to output compressed data. It can save memory
and save bandwidth. The output compressed data can be decompressed into nor-
mal YUV data by calling the scale_bm filter described later. For details, please refer
to Example 1 in Application Examples.

cbcer_interleave:

Whether the frame chroma data output by hardware video decoder decoding is in
interleaved format.

Set to 1, the output is a semi-planar yuvimage, such as nv12; set to 0, the output is
a planar yuv image, such as yuv420p.

Default valueis 1.
extra_frame_buffer_num:

The number of additional hardware frame buffers provided by the hardware video
decoder.

Default value is 2. Minimum value is 1.

skip_non_idr:
Frame skip mode. 0, off; 1, skip Non-RAP frames; 2, skip non-reference frames.
Default value is 0.

handle_packet_loss

When an error occurs, enable packet loss processing for H.264 and H.265 decoders.
0, no packet loss processing; 1, packet loss processing.

Copyright © SOPHGO 54

CHAPTER 4. MULTIMEDIA USER GUIDE

Default value is 0.
sophon_idx:

- The number of the SOPHON device in PCIE mode. Consistent with the device num-
ber of /dev/bm-sophon.

Default valueis 0.
zero_copy:

Copy the frame data on the device directly to the system memory automatically
applied by data[0]-data[3] of AVFrame. 1, disable copy; 0, enable copy.

Default value is 1.

4.3.3 Hardware Video Encoder

Hardware video encoders were added for the first time since BM1684. It supports
H.264/AVC and H.265/HEVC video encoding.

The capability of BM1684 hardware encoder design is: It can encode one channel
1080P30 video in real time. The specific indicators are as follows:

H.265 encoder:

Capable of encoding HEVC Main/Main10/MSP(Main Still Picture) Profile @ L5.1
High-tier

H.264 encoder:

Capable of encoding Baseline/Constrained Baseline/Main/High/High 10 Profiles
Level @ L5.2

General indicator
Maximum resolution : 8192x8192
Minimum resolution : 256x128
Encoded image width must be a multiple of 8
Encoded image height must be a multiple of 8

In SOPHGO FFMPEG release package, the name of the H.264 hardware video encoder is
h264_bm, and the name of the H.265 hardware video encoder is h265_bm or hevc_bm.
The following commands can be used to query the encoders supported by FFMPEG.

$ ffmpeg -encoders

Copyright © SOPHGO 55

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.3.1 Options Supported by Hardware Video Encoders

In FFMPEG, the hardware video encoder provides some additional options, which can be
queried by the following commands.

S ffmpeg -h encoder=h264_bm

$ ffmpeg -h encoder=hevc_bm

The BM1684 hardware video encoder supports the following options:

preset: preset encoding mode. Itis recommended to set it through enc-params.

0 - fast, 1 - medium, 2 - slow,

Default value is 2,

gop_preset: gop preset index value. It is recommended to set it through enc-params.

qp:

perf:

2
3
4
- 5:I1BBBP, cyclic gopsize 4
6
7
8

1: alll, gopsize 1
: IPP, cyclic gopsize 1
: IBB, cyclic gopsize 1
: IBPBP, cyclic gopsize 2

: IPPPP, cyclic gopsize 4
: IBBBB, cyclic gopsize 4
: random access, IBBBBBBBB, cyclic gopsize 8

Rate control method with constant quantization parameter

The value rangeis 0 to 51

Used to indicate if encoder performance needs to be tested

ThevalueisOorl

enc-params:

Used to set the internal parameters of the video encoder.

Supported encoding parameters: preset, gop_preset, qp, bitrate, mb_rc, delta_qp,
min_qgp, max_qp, bg, nr, deblock, weightp

Encoding parameter preset: the value range is fast, medium, slow or 0, 1, 2

Encoding parameter gop_preset: gop preset index value. Refer to the above for a
detailed explanation.

Copyright © SOPHGO 56

CHAPTER 4. MULTIMEDIA USER GUIDE

:alll, gopsize 1

: IPP, cyclic gopsize 1

: IBB, cyclic gopsize 1

: IBPBP, cyclic gopsize 2
: IBBBP, cyclic gopsize 4
: IPPPP, cyclic gopsize 4

~N o U B~ W N B

: IBBBB, cyclic gopsize 4
8: random access, IBBBBBBBB, cyclic gopsize 8

Encoding parameter gp: constant quantization parameter, the value range is [0,
51]. When this value is valid, the rate control algorithm is turned off, and the fixed
quantization parameter is used for coding.

Encoding parameter bitrate: used to encode the specified bitrate. The unit is Kbps,
1Kbps=1000bps. When specifying the parameter, please do not set the encoding
parameter gp.

Encoding parameter mb_rc: the valueis 0 or 1. When set to 1, the macroblock-level
rate control algorithm is enabled; when it is set to 0, the frame-level rate control
algorithm is enabled.

Encoding parameter delta_gp: the maximum difference of QP for the rate control
algorithm. Too large a value will affect the subjective quality of the video. Too small
will affect the speed of bit rate adjustment.

Encoding parameters min_gp and max_qgp: the minimum and maximum quantiza-
tion parameters used to control the code rate and video quality in the rate control
algorithm. The value range is [0, 51].

Encoding parameter bg: whether to enable background detection. The valueis 0 or
1.

Encoding parameter nr: Whether to enable the noise reduction algorithm. The
valueisOor 1.

Encoding parameter deblock: whether to enable the ring filter. There are the fol-
lowing usages:

- Turn off the ring filter “deblock=0" or “no-deblock” .

- Simply turn on the ring filter, using the default ring filter parameter “de-
block=1" .

- Turn on the ring filter and set the parameters, such as “deblock=6,6" .

Encoding parameter weightp: Whether to enable P frame, B frame weighted pre-
diction. The valueis 0 or 1.

sophon_idx: only for PCIE mode

Copyright © SOPHGO 57

CHAPTER 4. MULTIMEDIA USER GUIDE

Used to indicate the number of the SOPHON device to be used. Itis the same num-
ber as /dev/bm-sophon.

The minimum value is 0, the maximum value is the number of SOPHON devices
minus 1

- Applies only to regular interfaces.
is_dma_buffer:

Used to inform the encoder whether the input frame buffer is a contiguous physical
memory address on the device.

In PCIE mode, 0 indicates that the virtual address of the system memory is input;
in SoC mode, 0 indicates that the virtual address of the device memory is input. 1
means that the input is a contiguous physical address on the device.

Default valueis 1.

- Applies only to regular interfaces.

4.3.4 Hardware JPEG Decoder

In BM168x series processors, hardware JPEG decoder provides hardware JPEG image de-
coding input capability. Here is how to implement hardware JPEG decoding through
FFMPEG.

In FFMPEG, the name of the hardware JPEG decoder is jpeg_bm. You can use the follow-
ing command to check whether there is a jpeg_bm decoder in FFMPEG.

$ ffmpeg -decoders | grep jpeg_bm

4.3.4.1 Options Supported by the Hardware JPEG Decoder

In FFMPEG, you can use the following commands to view the options supported by the
jpeg_bm decoder

S ffmpeg -h decoder=jpeg_bm

The decoding options are described below. These optionsin the hardware JPEG decoder
can be reset using the av_dict_set() API function.

bs_buffer_size: Used to set the buffer size (KBytes) of the input bitstream in the hardware
JPEG decoder.

- Value range (0 to INT_MAX)
Default value is 5120

cber_interleave: Used to indicate whether the chroma data in the frame data output by
the JPEG decoder is in interleaved format.

0: The chroma data in the output frame data is in plannar format

Copyright © SOPHGO 58

CHAPTER 4. MULTIMEDIA USER GUIDE

1: The chroma data in the output frame data is in interleaved format
Default value is 0
num_extra_framebuffers: number of extra framebuffer required by JPEG decoder
For Still JPEG input, it is recommended to set this value to 0
For Motion JPEG input, it is recommended that the value be at least 2
- Value range (0 to INT_MAX)
Default value is 2
sophon_idx: Only for PCIE mode.

Used to indicate the number of the SOPHON device to be used. Consistent with the
number of /dev/bm-sophon

The minimum value is 0, the maximum value is the number of SOPHON devices
minus 1

- Applies only to regular interfaces.
zero_copy:

Copy the frame data on the device directly to the memory automatically applied by
data[0]-data[3] of AVFrame. 0, disable copy; 1, enable copy.

Default value is 1.

Only for PCIE mode old interface. The new interface provides the hwdownload fil-
ter, which can explicitly download data from device memory to system memory.

4.3.5 Hardware JPEG Encoder

In BM168x series processors, hardware JPEG encoder provides hardware JPEG image en-
coding output capability. Introduce here,How to implement hardware JPEG encoding
through FFMPEG,

In FFMPEG, the name of the hardware JPEG encoder is jpeg_bm, You can use the follow-
ing command to check whether there is a jpeg_bm encoder in FFMPEG.

$ ffmpeg -encoders | grep jpeg_bm

Copyright © SOPHGO 59

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.5.1 Options Supported by the Hardware JPEG Encoder

In FFMPEG, you can use the following command to view the options supported by the
jpeg_bm encoder

S ffmpeg -h encoder=jpeg_bm

The encoding options are described below. These optionsin the hardware JPEG encoder
can be reset using the av_dict_set() API function.

sophon_idx: Only for PCIE mode

Used to indicate the number of the SOPHON device to be used. Consistent with the
number of /dev/bm-sophon,

The minimum value is 0, the maximum value is the number of SOPHON devices
minus 1

- Applies only to regular interfaces.

is_dma_buffer:

Used to inform the encoder whether the input frame buffer is a contiguous physical
memory address on the device.

In PCIE mode, 0 indicates that the virtual address of the system memory is input;
in SoC mode, 0 indicates that the virtual address of the device memory is input. 1
means that the input is a contiguous physical address on the device.

Default valueis 1.

- Applies only to regular interfaces.

4.3.6 Hardware Scale Filter

The BM168x series hardware scalefilterisusedto “scale/crop/fill” theinputimage. For
example, transcoding applications. After decoding the 1080p video, use hardware scale
to scale it to 720p, and then compress and output.

Content Maximum Resolution | Minimum Resolution | Magnification
Hardware Limita- | 4096 * 4096 8*8 32
tions

In FFMPEG, the name of the hardware scale filter is scale_bm,

$ ffmpeg -filters | grep bm

Copyright © SOPHGO 60

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.6.1 Options Supported by the Hardware Scale Filter

In FFMPEG, you can use the following command to view the options supported by the

scaler_bm encoder

S ffmpeg -h filter=scale_bm

The description of the scale_bm options is as follows:

W:
The width of the scaled output video. Please refer to the usage of ffmpeg scale filter.
h:
The height of the scaled output video. Please refer to the usage of ffmpeg scale
filter.
format:
The output format of the scaled output video. Please refer to the usage of ffmpeg
scale filter.
For the supported formats of input and output, see Appendix 7.1.
The defaultvalueis “none” . Thatis, the output pixel format is system automatic.
Input is yuv420p, output is yuv420p; input is yuvj420p, output is yuvj420p. When
the inputis nv12, the default output is yuv420p.
Under the HWAccel framework: support the format conversion from nv12 to
yuv420p, nv12 to yuvj420p, yuv420p to yuvj420p, yuvj422p to yuvj420p, and
yuvj422p to yuv420p. See Appendix 7.1 for support in normal mode without the
HWACccel framework enabled.
Input Output Whether to Support | Whether to Support
Scaling Color Conversion
GRAY8 GRAYS8 Yes Yes
NV12(compressed) | YUV420P Yes Yes
YUV422P No Yes
YUV444Pp Yes Yes
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes
BGRP Yes Yes
NV12(uncompressed) YUV420P Yes Yes
YUV422P No Yes
YUV444P Yes Yes
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes

Copyright © SOPHGO

continues on next page

61

CHAPTER 4. MULTIMEDIA USER GUIDE

Table 4.2 — continued from previous page

Input Output Whether to Support | Whether to Support
Scaling Color Conversion
BGRP Yes Yes
YUV420P YUV420P Yes Yes
YUV422P No Yes
YUV444P Yes Yes
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes
BGRP Yes Yes
YUV422P YUV420P Yes Yes
YUV422P No No
YUV444Pp No No
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes
BGRP Yes Yes
YUV444p YUV420P Yes Yes
YUV422P No Yes
YUV444P Yes Yes
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes
BGRP Yes Yes
BGR. RGB YUV420P Yes
YUV422P No Yes
YUV444P Yes Yes
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes
BGRP Yes Yes
RGBP. BGRP YUV420P Yes
YUV422P No Yes
YUV444P Yes Yes
BGR Yes Yes
RGB Yes Yes
RGBP Yes Yes
BGRP Yes Yes

Table 7.1 scale_bm Pixel Format Support List

opt:

Scale operation (from 0 to 2) (default 0)

- Value 0 - Only scale operations are supported. Default value.

Copyright © SOPHGO

62

CHAPTER 4. MULTIMEDIA USER GUIDE

- Value 1 - Support scale + auto crop operation. The command line parameters can
be represented by crop.

- Value 2 - Support scale + padding operation. The command line parameters can be
represented by pad.

flags:
Scale method (from 0 to 2) (default 1)

- Value 0 - nearest filter. In the command line parameters, it can be represented by
nearest.

- Value 1 - bilinear filter. In the command line parameters, it can be represented by
bilinear.

- Value 2 - bicubic filter. In the command line parameters, it can be represented by
bicubic.

sophon_idx:
Device ID, start from 0.
Zero_copy:

- Value 0 - Indicates that the output AVFrame of scale_bm will contain both device
memory and host memory pointers, with the best compatibility and slightly lower
performance.

- Value 1-Indicates that the AVFrame output from scale_bm to the next level will only
contain valid device address, and will not synchronize data from device memory to
system memory. It is recommended that for the next level to use SOPHGO encod-
ing/filter, you can choose to set it to 1, and others are recommended to be set to
0.

Default valueis 0

4.3.7 AVFrame Special Definition Description

Following the FFMPEG specification, the hardware decoder provides output through
AVFrame, and the hardware encoder provides input through AVFrame. Therefore, when
calling the FFMPEG SDK and performing hardware codec processing through the API
method, please pay attention to the following special provisions of AVFrame. AVFrame is
linear YUV output. In AVFrame, data is the data pointer, which is used to save the physical
address, and linesize is the line span of each plane.

Copyright © SOPHGO 63

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.7.1 Definition of Avframe Interface Output by Hardware Decoder

General Interfaces

Definition of data array

Index Description

0 Virtual address of Y

1 The virtual address of CbCr when cbcr_interleave=1;
The virtual address of Cb when cbcr_interleave=0

2 The virtual address of Cr when cbcr_interleave=0

3 Unused

4 Physical address of Y

5 The physical address of CbCr when cbcr_interleave=1,
The physical address of Cb when cbcr_interleave=0

6 The physical address of Cr when cbcr_interleave=0

7 Unused

Definition of linesize array

Index Description

0 The span of virtual address of Y

1 The span of the virtual address of CbCr when cbcr_interleave=1;
The span of the virtual address of Cb when cbcr_interleave=0

2 The span of the virtual address of Cr when cbcr_interleave=0

3 Unused

4 The span of physical address of Y

5 The span of the physical address of CbCr when cbcr_interleave=1;
The span of the physical address of Cb when cbcr_interleave=0

6 The span of the physical address of Cr when cbcr_interleave=0

7 Unused

Copyright © SOPHGO

64

CHAPTER 4. MULTIMEDIA USER GUIDE

HWAccel Interface

Definition of data array

Index Uncompressed Format Descrip- | Compressed Format Descrip-
tion tion
0 Physical address of Y Physical address of com-
pressed luminance data
1 The physical ad- | The physical address of
dress of CbCr when | compressed chroma data
cber_interleave=1,
The physical address of Cb
when cbcr_interleave=0
2 The physical address of Cr | The physicaladdress of the
when cbcer_interleave=0 offset table for luminance
data
3 Reserved The physical address of
the offset table for chroma
data
4 Reserved Reserved

Definition of linesize array

Index Uncompressed Format Descrip- | Compressed Format Descrip-
tion tion

0 The span of physical ad- | The span of luminance
dress of Y data

1 The span of the physical | The span of chroma data
address of CbCr when
cbcr_interleave=1;
The span of the physi-
cal address of Cb when
cber_interleave=0

2 The span of the physi- | The size of the luminance
cal address of Cr when | offset table
cber_interleave=0

3 Unused The size of the chroma off-

set table

Copyright © SOPHGO

65

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.7.2 Definition of Avframe Interface Input by Hardware Encoder

General Interfaces

Definition of data array

Index Description

0 Virtual address of Y

Virtual address of Cb

Virtual address of Cr

Reserved

Physical address of Y

Physical address of Cb

Physical address of Cr

~N O U W N

Unused

Definition of linesize array

Index Description

0 The span of virtual address of Y

The span of virtual address of Cb

The span of virtual address of Cr

Unused

The span of physical address of Y

The span of physical address of Cb

The span of physical address of Cr

~N O G B W N

Unused

HWAccel Interface

Definition of data array

Index Description

0 Physical address of Y
1 Physical address of Cb
2 Physical address of Cr
3 Reserved

4 Reserved

Definition of linesize array

Copyright © SOPHGO

CHAPTER 4. MULTIMEDIA USER GUIDE

Index Description

0 The span of physical address of Y
1 The span of physical address of Cb
2 The span of physical address of Cr
3 Unused

4.3.7.3 AVFrame Interface Definition of Hardware Filter Input and Output

1.When the HWAccel acceleration function is not enabled, the definition of the
AVFrame interface adopts the memory layout of the regular interface.

Definition of data array

Index Description

0 virtual address of Y

virtual address of Cb

virtual address of Cr

Reserved

Physical address of Y

Physical address of Cb

Physical address of Cr

~N| OO AW N

Unused

Definition of linesize array

Index Description

0 The span of virtual address of Y

1 The span of virtual address of Cb
2 The span of virtual address of Cr
3 Unused

4 The span of physical address of Y
5 The span of physical address of Cb
6 The span of physical address of Cr
7 Unused

2.AVFrame interface definition in HWAccel interface

Definition of data array

Copyright © SOPHGO

67

CHAPTER 4. MULTIMEDIA USER GUIDE

Index Description Compressed Format Input In-
terface
0 Physical address of Y Physical address of com-
pressed luminance data
1 Physical address of Cb Physical address of com-
pressed chroma data
2 Physical address of Cr Physical address of the
offset table for luminance
data
3 Reserved Physical address of the off-
set table for chroma data
4 Reserved Reserved
Definition of linesize array
Index Description Compressed Format Input In-
terface
0 The span of the physical | The span of luminance
address of Y data
1 The span of the physical | The span of chroma data
address of Cb
2 The span of the physical | The size of the luminance
address of Cr offset table
3 Unused The size of the chroma off-

set table

4.3.8 Application Examples of Hardware Acceleration in FFMPEG Command

The FFMPEG command line parameters corresponding to the normal mode and the
HWAccel mode are given below at the same time.

To facilitate understanding, here is a summary of the description:

In normal mode, whether the output memory of the bm decoder is synchronized to
the system memory is controlled by zero_copy, the default is 1.

In normal mode, whether the input memory of the bm encoder s in system memory
or device memory is controlled by is_dma_buffer, the default value is 1.

In normal mode, the bm filter will automatically determine the synchronization of
the input memory, and whether the output memory is synchronized to the system
memory is controlled by zero_copy, the default value is 0.

In HWAccel mode, the synchronization between device memory and system mem-
ory is controlled by hwupload and hwdownload.

Copyright © SOPHGO

68

CHAPTER 4. MULTIMEDIA USER GUIDE

In normal mode, use sophon_idx to specify the device, the default is 0; in HWAccel
mode, use hwaccel_device to specify.

4.3.8.1 Example 1

Use device 0. Decode H.265 video, output compressed frame buffer, scale_bm decom-
press compressed frame buffer and scale into CIF, and then encode into H.264 code
stream.

Normal mode:

$ ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265 \
-vf “scale_bm=352:288:zero_copy=1" \

-c:v h264_bm -g 256 -b:v 256K \

-y wkc_100_cif_scale.264

HWAccel mode:

S ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\
-vf “scale_bm=352:288" \

-c:v h264_bm -g 256 -b:v 256K\

-y wkc_100_cif_scale.264

4.3.8.2 Example 2

Use device 0. Decode H.265 video, scale and auto crop to CIF, then encode to H.264
stream.

Normal mode:

S ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265 \
-vf “scale_bm=352:288:0pt=crop:zero_copy=1" \

-c:v h264_bm -g 256 -b:v 256K \

-y wkc_100_cif_scale_crop.264

HWAccel mode:

$ ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-vf “scale_bm=352:288:0pt=crop” \

-c:v h264_bm -g 256 -b:v 256K \

Copyright © SOPHGO 69

CHAPTER 4. MULTIMEDIA USER GUIDE

-y wkc_100_cif_scale_crop.264

4.3.8.3 Example 3

Use device 0. Decode H.265 video, scale and automatically padding into CIF, and then
encode into H.264 stream.

Normal mode:

$ ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265\
-vf “scale_bm=352:288:0pt=pad:zero_copy=1" \
-c:v h264_bm -g 256 -b:v 256K\

-y wkc_100_cif_scale_pad.264

HWAccel mode:

S ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\
-vf “scale_bm=352:288:0pt=pad” \

-c:v h264_bm -g 256 -b:v 256K\

-y wkc_100_cif_scale_pad.264

4.3.8.4 Example 4

Demonstration video screenshot function. Use device 0. Decode H.265 video, scale and
automatically padding to CIF, then encode to jpeg image.

Normal mode:

S ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265 \

-vf “scale_bm=352:288:0pt=pad:format=yuvj420p:zero_copy=1" \
-c:v jpeg_bm -vframes 1\

-y wkc_100_cif_scale.jpeg

HWAccel mode:

$ ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-vf “scale_bm=352:288:0pt=pad:format=yuvj420p” \

-c:v jpeg_bm -vframes 1\

-y wkc_100_cif_scale.jpeg

Copyright © SOPHGO 70

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.8.5 Example 5

Demonstrate video transcoding + video screenshot function. Use device 0. Hardware
decode H.265 video, scale it into CIF, and then encode it into H.264 code stream; at the
same time, it scales to 720p, and then encode it into JPEG image.

Normal mode:
$ ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-filter_complex “[0:v]scale_bm=352:288:zero_copy=1[imgl];[0:v]scale_bm=1280:720:format=
\

yuvj420p:zero_copy=1[img2]” -map ‘[imgl]’ -c:vh264_bm -b:v 256K -yimgl.264 \
-map ‘[img2]’ -c:vjpeg_bm -vframes 1-yimg2.jpeg

HWAccel mode:

S ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-filter_complex “[0:v]scale_bm=352:288[img1];[0:v]scale_bm=1280:720:format=yuvj420p[img2]”
\

-map ‘[imgl]’ -c:vh264_bm -b:v256K-yimgl.264 \
-map ‘[img2]’ -c:vjpeg_bm -vframes1-yimg2.jpeg

4.3.8.6 Example 6

Demonstrates the hwdownload function. Hardware decode H.265 video, and then down-
load and store it as a YUV file.

Filter hwdownload is dedicated to the HWAccel interface and is used to synchronize de-
vice memory and system memory. In normal mode, this step can be achieved by speci-
fying the zero_copy option in the codec, so the hwdownload filter is not required.

Normal mode:

$ ffmpeg -c:v hevc_bm -cber_interleave 0 -zero_copy 0\
-i src/wkc_100.265 -y test_transfer.yuv

HWAccel mode:

$ ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -cbcr_interleave 0 -i src/wkc_100.265\

-vf “hwdownload,format=yuv420p|bmcodec” \

-y test_transfer.yuv

Copyright © SOPHGO 71

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.8.7 Example 7

Demonstrates the hwdownload function. Hardware decode H.265 video, scales it into
CIF format, and then download and store it as a YUV file.

In normal mode, scale_bm will automatically determine whether to synchronize mem-
ory according to the filter chain, so hwdownload is not required.

Normal mode:

S ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265 \

-vf “scale_bm=352:288,format=yuv420p” \

-y test_transfer_cif.yuv

HWAccel mode:

$ ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-vf “scale_bm=352:288,hwdownload,format=yuv420p|bmcodec” \

-y test_transfer_cif.yuv

4.3.8.8 Example 8

Demonstrates the hwupload function. Use device 0. Upload YUV video, then encode
H.264 video.

Filter hwupload is dedicated to the HWAccel interface and is used to synchronize device
memory and system memory. In normal mode, this step can be achieved by specifying
the is_dma_buffer option in the encoder, so the hwupload filter is not required.

Normal mode:

$ ffmpeg -s 1920x1080 -pix_fmt yuv420p -i test_transfer.yuv \

-c:v h264_bm -b:v 3M -is_dma_buffer 0 -y test_transfer.264

HWAccel mode:

$ ffmpeg -init_hw_device bmcodec=f00:0 \

-5 1920x1080 -i test_transfer.yuv '\

-filter_hw_device foo -vf “format=yuv420p|bmcodec,hwupload” \
-c:v h264_bm -b:v 3M -y test_transfer.264

Here foo is an alias for device 0.

Copyright © SOPHGO 72

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.8.9 Example 9

Demonstrates the hwupload function. Use device 1. Upload YUV video, scale to CIF, then
encode H.264 video.

Normal mode:

$ ffmpeg -s 1920x1080 -i test_transfer.yuv \

-vf “scale_bm=352:288:sophon_idx=1:zero_copy=1" \
-c:v h264_bm -b:v 256K -sophon_idx 1\

-y test_transfer_cif.264

Description: 1) -pix_fmt yuv420p is not specified here because the default input is
yuv420p format

2) In normal mode, bm_scale filter, decoder, encoder specifies which device to use
through the parameter sophon_idx

HWAccel mode:

$ ffmpeg -init_hw_device bmcodec=foo:1\

-5 1920x1080 -i test_transfer.yuv \

-filter_hw_device foo \

-vf “format=yuv420p|bmcodec,hwupload,scale_bm=352:288" \
-c:v h264_bm -b:v 256K -y test_transfer_cif.264

Description: Here foo is the alias of device 1. In HWAccel mode, the specific hardware
device is specified by init_hw_device.

4.3.8.10 Example 10

Demonstrates the hwdownload function. Hardware decode the JPEG video of YUVJ444P,
and then download and store it as a YUV file.

Normal mode:

$ ffmpeg -c:v jpeg_bm -zero_copy 0 -i src/car/1920x1080_yuvj444.jpg \
-y car_1080p_yuvj444_dec.yuv

HWAccel mode:

$ ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-C:v jpeg_bm -i src/car/1920x1080_yuvj444.jpg \

-vf “hwdownload,format=yuvj444p|bmcodec” \

-y car_1080p_yuvj444_dec.yuv

Copyright © SOPHGO 73

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.8.11 Example 11

Demonstrates the hwupload function. Use device 1. Upload the YUVJ444P image data,
and then encode the JPEG image.

Normal mode:

$ ffmpeg -s 1920x1080 -pix_fmt yuvj444p -i car_1080p_yuvjd44.yuv \
-c:v jpeg_bm -sophon_idx 1 -is_dma_buffer 0\

-y car_1080p_yuvj444_enc.jpg

HWAccel mode:

$ ffmpeg -init_hw_device bmcodec=foo:1\

-5 1920x1080 -pix_fmt yuvj444p -i car_1080p_yuvj444.yuv \
-filter_hw_device foo -vf ‘format=yuvj444p|bmcodec,hwupload’ \
-c:v jpeg_bm -y car_1080p_yuvj444_enc.jpg

Here foo is the alias of device 1.

4.3.8.12 Example 12

Demonstrate the method of mixing soft decoding and hard encoding. Use device 2. Use
the h264 soft decoder that comes with ffmpeg to decode the H.264 video, upload the
decoded data to processor 2, and then encode the H.265 video.

Normal mode:

S ffmpeg -c:v h264 -i src/1920_18MG.mp4 \

-c:v h265_bm -is_dma_buffer 0 -sophon_idx 2 -g 256 -b:v 5M \

-y test265.mp4

HWAccel mode:

S ffmpeg -init_hw_device bmcodec=foo:2 \

-C:v h264 -i src/1920_18MG.mp4 \

-filter_hw_device foo -vf ‘format=yuv420p|bmcodec,hwupload’ \
-c:v h265_bm -g 256 -b:v 5M \

-y test265.mp4

Here foo is the alias of device 2.

Copyright © SOPHGO 74

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.8.13 Example 13

Demonstrates how to set the video encoder using enc-params. Use device 0. Decode
H.265 video, scale to CIF, and encode to H.264 stream.

Normal mode:

$ ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-vf “scale_bm=352:288:zero_copy=1" \

-c:v h264_bm -g 50 -b:v 32K\

-enc-params “gop_preset=2:mb_rc=1:delta_qp=3:min_qp=20:max_qp=40" \
-y wkc_100_cif_scale_ipp_32Kbps.264

HWAccel mode:

S ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-vf “scale_bm=352:288" \

-c:v h264_bm -g 50 -b:v 32K \

-enc-params “gop_preset=2:mb_rc=1:delta_qp=3:min_qp=20:max_qp=40" \
-y wkc_100_cif_scale_ipp_32Kbps.264

4.3.8.14 Example 14

Use device 0. Decode H.265 video, use bilinear filter, scale to CIF, and automatically
padding, and then encode into H.264 code stream.

Normal mode:

$ ffmpeg -c:v hevc_bm -output_format 101 -i src/wkc_100.265 \
-vf “scale_bm=352:288:0pt=pad:flags=bilinear:zero_copy=1" \
-c:v h264_bm -g 256 -b:v 256K\

-y wkc_100_cif_scale_pad.264

HWAccel mode:

S ffmpeg -hwaccel bmcodec -hwaccel_device 0\

-c:v hevc_bm -output_format 101 -i src/wkc_100.265\

-vf “scale_bm=352:288:0pt=pad:flags=bilinear” \

-c:v h264_bm -g 256 -b:v 256K\

-y wkc_100_cif_scale_pad.264

Copyright © SOPHGO 75

CHAPTER 4. MULTIMEDIA USER GUIDE

4.3.9 Use Hardware Acceleration Function by Calling the API

The example in examples/multimedia/ff_bmcv_transcode demonstrates the entire pro-
cess of using ffmpeg for codec and bmcv for image processing.

The example in examples/multimedia/ff_video_decode demonstrates the process of de-
coding using ffmpeg.

The example in examples/multimedia/ff_video_encode demonstrates the process of en-
coding using ffmpeg.

4.3.10 Hardware encoding Supporting roi encoding

According to the example in examples/multimedia/ff_video_encode/, you can enable roi
encoding by setting roi_enable.

Roi encode data is passed through av_frame side data.

Roi data structure is defined as:

-
- L

!

mb_force mode;
mb_qgp;

rce _mode;
eff_drop;

sub_ctu_qp_0;

sub ctufqp73j

lambda_sad 0;
lambda ;
lambda H
lambda_sad_3;

AVBMRoiInfo {
int numbers;
Enable ROT map. */
customRoiMapEnable;
Enable custom lambda map. */
customLambdaMapEnable;
For CTU to be encoded with intra or to be skipped. */
customModeMapEnable;
For 11 coefficients to be zero after TQ or not for each CTU (to be dropped).*/
customCoefDropEnable;

RoiField field[0x40000];
} AVBMRoiInfo;

Field Description:
QP Map

The QP in H264 is given in units of macroblock 16x16. QP in HEVC is given in
units of sub-ctu (32x32). QP corresponds to Qstep in video encoding, and the

Copyright © SOPHGO 76

CHAPTER 4. MULTIMEDIA USER GUIDE

value range is 0-51.

Lamda Map

lamda is used to control and adjust the RC calculation formula inside the IP
cost = distortion + lamda * rate

This tuning parameteris only valid in HEVC and allows control in units of 32x32
sub-CTU modules.

Mode Map

This parameter is used to specify the mode selection. 0-notapplicable 1 - skip
mode 2-intra mode. Itis controlled in units of 16x16 macroblocksin H264, and
in units of CTU 64x64 in HEVC.

Zero-cut Flag

Only valid in HEVC. All the current CTU 64x64 residual coefficients are set to 0,
thereby saving more bits for other more important parts.

4.4 SOPHGO LIBYUV User Guide

4.4.1 Introduction

Various hardware modules in the BM168x series processors can accelerate the process-
ing of pictures and videos. In terms of color conversion, using dedicated hardware to
accelerate, the speed will be very fast.

However, in some occasions, there will also be some special cases that cannot be cov-
ered by dedicated hardware. At this time, the software implementation optimized by
SIMD acceleration is adopted, which becomes a powerful supplement to the dedicated
hardware.

SOPHGO Enhanced libyuv, isa component released with the SDK.The purpose is to make
full use of the 8-core A53 processor provided by the BM168x series processors, supple-
menting the limitations of the hardware through software.

In addition to the standard functions provided by libyuv, for the needs of Deep learning,
27 extension functions are added in the SOPHGO enhanced libyuv.

Note: This refers to the A53 processor running on the BM168x series, not the host proces-
sor. This makes sense from the point of view of device acceleration , which avoids taking
up the host’ s processor.

Copyright © SOPHGO T7

CHAPTER 4. MULTIMEDIA USER GUIDE

4.4.2 Libyuv Extension Description

The following APIs have been added to enhance Deep learning applications.

4.4.2.1 fast _memcpy

void* fast_memcpy(void *dst, const void *src, size_t n)

4.4.2.2 RGB24Tol400

int RGB24Tol400(const uint8_t* src_rgh24, int src_stride_rgh24, uint8_t*
dst_y, int dst_stride_y, int width, int height);

Function | This APl can convert a frame of BGR data to BT.601 grayscale data.
Params | src_rgh24 The virtual address of the memory where the
packed BGR image data is located
src_stride_rgb24 The actual span of each line of BGR image in mem-
ory
dst_y Virtual address of grayscale image
dst_stride_y The actual span of each line of grayscale image in
memory
width The number of packed BGRs in each row of BGR im-
age data
height Number of valid lines of BGR image data
Return 0, normal termination; others, abnormal parameter.
Value

4.42.3 RAWTol400

int RAWTol400(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y, int
dst_stride_y, int width, int height);

Copyright © SOPHGO 78

CHAPTER 4. MULTIMEDIA USER GUIDE

Function | This APl can convert a frame of RGB data to BT.601 grayscale data.
Params | src_row The virtual address of the memory where the
packed BGR image data is located
src_stride_row The actual span of each line of BGR image in mem-
ory
dst_y Virtual address of grayscale image
dst_stride_y The actual span of each line of grayscale image in
memory
width The number of packed BGRs in each row of BGR im-
age data
height Number of valid lines of BGR image data
Return 0, normal termination; others, abnormal parameter.
Value

4.4.2.4 1400ToRGB24

int [400ToRGB24(const uint8_t* src_y, int src_stride_y, uint8_t* dst_rgb24, int
dst_stride_rgh24, int width, int height);

Function | This APl can convert a frame of BT.601 grayscale data to BGR data.
Params | src_y Virtual address of grayscale image
src_stride_y The actual span of each line of grayscale image in
memory
dst_rgb24 The virtual address of the memory where the
packed BGR image data is located
dst_stride_rgbh24 The actual span of each line of BGR image in mem-
ory
width The number of packed BGRs in each row of BGR im-
age data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.5 1400ToRAW

int 1400ToRAW(const uint8_t* src_y, int src_stride_y, uint8_t* dst_raw, int
dst_stride_raw, int width, int height);

Copyright © SOPHGO

79

CHAPTER 4. MULTIMEDIA USER GUIDE

Function | This API can convert a frame of BT.601 grayscale data to RGB data.
Params | src_y Virtual address of grayscale image
src_stride_y The actual span of each line of grayscale image in
memory
dst_rgh24 The virtual address of the memory where the
packed RGB image data is located
dst_stride_rgb24 The actual span of each line of RGB image in mem-
ory
width The number of packed RGBs in each line of RGB im-
age data
height Number of valid lines of RGB image data
Return 0, normal termination; others, abnormal parameter.
Value

4.4.2.6 JA00ToRGB24

int J400ToRGB24(const uint8_t* src_y, intsrc_stride_y, uint8_t* dst_rgb24, int
dst_stride_rgh24, int width, int height);

Function | This API can convert a frame of BT.601 full range grayscale data to BGR data.
Params | src_y Virtual address of grayscale image
src_stride_y The actual span of each line of grayscale image in
memory
dst_rgbh24 The virtual address of the memory where the
packed BGR image data is located
dst_stride_rgh24 The actual span of each line of BGRimage in mem-
ory
width The number of packed BGRs in each row of BGR
image data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.42.7 RAWTo0J400

int RAWToJ400(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y, int
dst_stride_y, int width, int height);

Copyright © SOPHGO

80

CHAPTER 4. MULTIMEDIA USER GUIDE

Function | This API can convert a frame of RGB data to BT.601 full range grayscale data.
Params | src_raw The virtual address of the memory where the
packed RGB image data is located
src_stride_raw The actual span of each line of RGB image in mem-
ory
dst_y Virtual address of grayscale image
dst_stride_y The actual span of each line of grayscale image in
memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.8 JA00ToRAW

int J400ToRAW(const uint8_t* src_y, int src_stride_y, uint8_t* dst_raw, int
dst_stride_raw, int width, int height);

Function | This API can convert a frame of BT.601 full range grayscale data to RGB data.
Params | src_y Virtual address of grayscale image
src_stride_y The actual span of each line of grayscale image in
memory
dst_rgbh24 The virtual address of the memory where the
packed RGB image data is located
dst_stride_rgh24 The actual span of each line of RGB image in mem-
ory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.42.9 RAWToNV12

int RAWToNV12(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_uv, int dst_stride_uv, int width, int height);

Copyright © SOPHGO

81

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- This APl can convert a frame of RGB data to semi-planar YCbCr 420 data of BT.601
tion limited range.
Params | src_raw The virtual address of the memory where the
packed RGB image data is located
src_stride_raw The actual span of each line of RGB image in
memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data in mem-
ory
dst_uv Virtual address of CbCr
dst_stride_uv The actual span of each row of CbCr data in
memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.10 RGB24ToNV12

int RGB24ToNV12(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y,
int dst_stride_y, uint8_t* dst_uyv, int dst_stride_uyv, int width, int height);

Func- This API can convert a frame of BGR data into semi-planar YCbCr 420 data of
tion BT.601 limited range.
Params | src_raw The virtual address of the memory where the
packed BGR image data is located
src_stride_raw The actual span of each line of BGR image in
memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data in mem-
ory
dst_uv Virtual address of CbCr
dst_stride_uv The actual span of each row of CbCr data in
memory
width The number of packed BGRs in each row of
BGR image data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

Copyright © SOPHGO

82

CHAPTER 4. MULTIMEDIA USER GUIDE

4.42.11 RAWT0J420

int RAWToJ420(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int dst_stride_yv,
int width, int height);

Func- This API can convert a frame of RGB data to BT.601 full range semi-planar YCbCr
tion 420 data.
Params | src_raw The virtual address of the memory where the
packed RGB image data is located
src_stride_raw The actual span of each line of RGB image in
memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y datain memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb data in mem-
ory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data in mem-
ory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.12 JA20ToRAW

int J420ToRAW(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_raw, int
dst_stride_raw, int width, int height);

Copyright © SOPHGO 83

CHAPTER 4. MULTIMEDIA USER GUIDE

Function | This API can convert a frame of BT.601 full range YCbCr 420 data to RGB data.
Params | src_y Virtual address of Y
src_stride_y The actual span of each row of Y data in memory
src_u Virtual address of Cb
src_stride_u The actual span of each row of Cb datain memory
Src_v Virtual address of Cr
src_stride v The actual span of each row of Cr data in memory
dst_raw The virtual address of the memory where the
packed RGB image data is located
dst_stride_raw The actual span of each line of RGB image data in
memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.42.13 RAWTo0J422

int RAWToJ422(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int dst_stride_yv,
int width, int height);

Function | This APl can convert a frame of RGB data to BT.601 full range YCbCr 422 data.
Params | src_raw The virtual address of the memory where the
packed RGB image data is located
src_stride_raw The actualspan of each line of RGBimage in mem-
ory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb datain memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data in memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

Copyright © SOPHGO

84

CHAPTER 4. MULTIMEDIA USER GUIDE

4.42.14 JA22ToRAW

int J422ToRAW(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_raw, int
dst_stride_raw, int width, int height);

Function | This APl can convert a frame of BT.601 full range YCbCr 422 data to RGB data.
Params | src_y Virtual address of Y
src_stride_y The actual span of each row of Y data in memory
src_u Virtual address of Cb
src_stride_u The actual span of each row of Cb datain memory
src_v Virtual address of Cr
src_stride_v The actual span of each row of Cr data in memory
dst_raw The virtual address of the memory where the
packed RGB image data is located
dst_stride_raw The actual span of each line of RGB image data in
memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.15 RGB24ToJ422

int RGB24ToJ422(const uint8_t* src_rgh24, int src_stride_rgb24, uint8_t*
dst_y, int dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int
dst_stride_v, int width, int height);

Function | This APl can convert a frame of BGR data to BT.601 full range YCbCr 422 data.
Params | src_rgb24 The virtual address of the memory where the
packed BGR image data is located
src_stride_rgh24 Theactual span of each line of BGRimage in mem-
ory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data in memory
width The number of packed BGRs in each row of BGR
image data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

Copyright © SOPHGO 85

CHAPTER 4. MULTIMEDIA USER GUIDE

4.42.16 J422ToRGB24

int J422ToRGB24(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_rgb24, int
dst_stride_rgbh24, int width, int height);

Function | This APl can convert a frame of BT.601 full range YCbCr 422 data to BGR data.
Params | src_y Virtual address of Y
src_stride_y The actual span of each row of Y data in memory
src_u Virtual address of Cb
src_stride_u The actual span of each row of Cb datain memory
src_v Virtual address of Cr
src_stride_v The actual span of each row of Cr data in memory
dst_rgbh24 The virtual address of the memory where the
packed BGR image data is located
dst_stride_rgh24 The actual span of each row of BGR image data in
memory
width The number of packed BGRs in each line of RGB
image data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.42.17 RAWToJ444

int RAWToJ444(const uint8_t* src_raw, int src_stride_raw, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int dst_stride_v,
int width, int height);

Function | This APl can convert a frame of RGB data to BT.601 full range YCbCr 444 data
Params | src_row The virtual address of the memory where the
packed RGB image data is located
src_stride_row Theactual span of each line of RGBimage in mem-
ory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data in memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

Copyright © SOPHGO 86

CHAPTER 4. MULTIMEDIA USER GUIDE

4.42.18 J44AToRAW

int J444ToRAW(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_raw, int
dst_stride_raw, int width, int height);

Function | This APl can convert a frame of BT.601 full range YCbCr 444 data to RGB data.
Params | src_y Virtual address of Y
src_stride_y The actual span of each row of Y data in memory
src_u Virtual address of Cb
src_stride_u The actual span of each row of Cb datain memory
src_v Virtual address of Cr
src_stride_v The actual span of each row of Cr data in memory
dst_raw The virtual address of the memory where the
packed RGB image data is located
dst_stride_raw The actual span of each line of RGB image data in
memory
width The number of packed RGBs in each line of RGB
image data
height Number of valid lines of RGB image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.19 RGB24ToJ444

int RGB24ToJ444(const uint8_t* src_rgh24, int src_stride_rgb24, uint8_t*
dst_y, int dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int
dst_stride_v, int width, int height);

Function | This APl can convert a frame of BGR data to BT.601 full range YCbCr 444 data.
Params | src_rgb24 The virtual address of the memory where the
packed BGR image data is located
src_stride_rgh24 Theactual span of each line of BGRimage in mem-
ory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data in memory
width The number of packed BGRs in each row of BGR
image data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

Copyright © SOPHGO 87

CHAPTER 4. MULTIMEDIA USER GUIDE

4.4.2.20 J444ToRGB24

int J444ToRGB24(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_rgb24, int
dst_stride_rgbh24, int width, int height);

Function | This APl can convert a frame of BT.601 full range YCbCr 444 data to BGR data.
Params | src_y Virtual address of Y
src_stride_y The actual span of each row of Y data in memory
src_u Virtual address of Cb
src_stride_u The actual span of each row of Cb datain memory
src_v Virtual address of Cr
src_stride_v The actual span of each row of Cr data in memory
dst_rgbh24 The virtual address of the memory where the
packed BGR image data is located
dst_stride_rgh24 The actual span of each row of BGR image data in
memory
width The number of packed BGRs in each line of RGB
image data
height Number of valid lines of BGR image data
Return | 0, normal termination; others, abnormal parameter.
Value

4.4.2.21 H420ToJ420

int H420ToJ420(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int dst_stride_yv,
int width, int height);

Copyright © SOPHGO

88

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This API can convert a frame of BT.709 limited range YCbCr 420 data to BT.601
tion full range data. It can be used as a preprocessing function before jpeg encoding.
Params| src_y Virtual address of Y
src_stride_y The actual span of each row of Y data
in memory
src_u Virtual address of Cb
src_stride u The actual span of each row of Cb
data in memory
Src_v Virtual address of Cr
src_stride_v The actual span of each row of Cr
data in memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data
in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb
data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr
data in memory
width The number of packed RGBs in each
line of RGB image data
height Number of valid lines of RGB image
data
Re- 0, normal termination; others, abnormal parameter.
turn
Value

4.4.2.22 1420ToJ420

int 1420ToJ420(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_u, int dst_stride_u, uint8_t* dst_v, int dst_stride_v,
int width, int height);

Copyright © SOPHGO 89

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This API can convert a frame of BT.601 limited range YCbCr 420 data to BT.601
tion full range data. It can be used as a preprocessing function before jpeg encoding.
Params| src_y Virtual address of Y
src_stride_y The actual span of each row of Y data
in memory
src_u Virtual address of Cb
src_stride u The actual span of each row of Cb
data in memory
Src_v Virtual address of Cr
src_stride_v The actual span of each row of Cr
data in memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data
in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb
data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr
data in memory
width The number of packed RGBs in each
line of RGB image data
height Number of valid lines of RGB image
data
Re- 0, normal termination; others, abnormal parameter.
turn
Value

4.4.2.23 NV12ToJ420

int NV12ToJ420(const uint8_t* src_y, int src_stride_y, const uint8_t* src_uyv,
int src_stride_uv, uint8_t* dst_y, int dst_stride_y, uint8_t* dst_u, int
dst_stride_u, uint8_t* dst_v, int dst_stride_v, int width, int height);

Copyright © SOPHGO 90

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This API can convert a frame of BT.601 limited range semi-plannar YCbCr 420 data
tion into BT.601 full range data. It can be used as a preprocessing function before jpeg
encoding.
Params src_y Virtual address of Y
src_stride_y The actual span of each row of Y data
in memory
src_uv Virtual address of CbCr
src_stride_uv The actual span of each row of CbCr
data in memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data
in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb
data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data
in memory
width The number of packed RGBs in each
line of RGB image data
height Number of valid lines of RGB image
data
Re- 0, normal termination; others, abnormal parameter.
turn
Value

4.4.2.24 NV21ToJ420

int NV21ToJ420(const uint8_t* src_y, int src_stride_y, const uint8_t* src_vu,
int src_stride_vu, uint8_t* dst_y, int dst_stride_y, uint8_t* dst_u, int
dst_stride_u, uint8_t* dst_v, int dst_stride_v, int width, int height);

Copyright © SOPHGO 91

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This API can convert a frame of BT.601 limited range semi-plannar YCbCr 420 data
tion into BT.601 full range data. It can be used as a preprocessing function before jpeg
encoding.
Params src_y Virtual address of Y
src_stride_y The actual span of each row of Y data
in memory
src_vu Virtual address of CrCb
src_stride_vu The actual span of each row of CrCb
data in memory
dst_y Virtual address of Y
dst_stride_y The actual span of each row of Y data
in memory
dst_u Virtual address of Cb
dst_stride_u The actual span of each row of Cb
data in memory
dst_v Virtual address of Cr
dst_stride_v The actual span of each row of Cr data
in memory
width The number of packed RGBs in each
line of RGB image data
height Number of valid lines of RGB image
data
Re- 0, normal termination; others, abnormal parameter.
turn
Value

4.4.2.25 1444ToNV12

int 1444ToNV12(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_uv, int dst_stride_uv, int width, int height);

Copyright © SOPHGO 92

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This API can convert one frame of YCbCr 444 data to semi-plannar YCbCr 420 data,

tion and available in full range and limited range. It is not involve in color space conversion
and can be used flexibly.

Paramssrc_y Thevirtual address of Y component of

the source image

src_stride_y The actual span of each row of Y data
in memory

src_u The virtual address of Cb component
of the source image

src_stride_u The actual span of eachrow of Cb data
in memory

Src_v The virtual address of Cr component
of the source image

src_stride_v The actual span of each row of Cr data
in memory

dst_y Thevirtual address of Y component of
the destination image

dst_stride_y The actual span of each row of Y data
in memory

dst_uv The virtual address of CbCr compo-

nent of the destination image

dst_stride _uv

The actual span of each row of CbCr
data in memory

width Number of pixelsin each line of image
data
height number of valid lines of image data

pixels

Re-
turn

0, normal termination; others, abnormal parameter.

Value

4.4.2.26

1422ToNV12

int 1422ToNV12(const uint8_t* src_y, int src_stride_y, const uint8_t* src_u,
int src_stride_u, const uint8_t* src_v, int src_stride_v, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_uv, int dst_stride_uyv, int width, int height);

Copyright © SOPHGO 93

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This APl can convert one frame of YCbCr 422 data to semi-plannar YCbCr 420 data
tion ,and available in full range and limited range. It is not involve in color space conversion
and can be used flexibly.
Paramssrc_y Thevirtual address of Y component of
the source image
src_stride_y The actual span of each row of Y data
in memory
src_u The virtual address of Cb component
of the source image
src_stride_u The actual span of eachrow of Cb data
in memory
Src_v The virtual address of Cr component
of the source image
src_stride_v The actual span of each row of Cr data
in memory
dst_y Thevirtual address of Y component of
the destination image
dst_stride_y The actual span of each row of Y data
in memory
dst_uv The virtual address of CbCr compo-
nent of the destination image
dst_stride_uv The actual span of each row of CbCr
data in memory
width Number of pixelsin each line of image
data
height number of valid lines of image data
pixels
Re- 0, normal termination; others, abnormal parameter.
turn
Value

4.4.2.27 1400ToNV12

int 1400ToNV12(const uint8_t* src_y, int src_stride_y, uint8_t* dst_y, int
dst_stride_y, uint8_t* dst_uv, int dst_stride_uv, int width, int height);

Copyright © SOPHGO 94

CHAPTER 4. MULTIMEDIA USER GUIDE

Func- | This API can convert one frame of YCbCr 400 data to semi-plannar YCbCr 420 data,
tion and available in full range and limited range. It is not involve in color space conversion
and can be used flexibly.
Paramssrc_y Thevirtual address of Y component of
the source image
src_stride_y The actual span of each row of Y data
in memory
dst_y Thevirtual address of Y component of
the destination image
dst_stride_y The actual span of each row of Y data
in memory
dst_uv The virtual address of CbCr compo-
nent of the destination image
dst_stride_uv The actual span of each row of CbCr
data in memory
width Number of pixelsin each line ofimage
data
height number of valid lines of image data
pixels
Re- 0, normal termination; others, abnormal parameter.
turn
Value

Copyright © SOPHGO 95

	Disclaimer
	Release note
	Disclaimer
	Multimedia User Guide
	SOPHGO Multimedia Framework Introduction
	Introduction
	BM1684 Hardware Acceleration Function
	Video Codec
	Image Codec
	Image Processing

	Hardware Memory Classification
	Frame Conversion
	Conversion between FFMPEG and OPENCV
	Conversion between FFMPEG and BMCV API
	Conversion between OPENCV and BMCV API

	SOPHGO OpenCV User Guide
	OpenCV Introduction
	Data Structure Extension Description
	API Extension Description
	bool VideoCapture::get_resampler(int *den, int *num)
	bool VideoCapture::set_resampler(int den, int num)
	double VideoCapture::get(CAP_PROP_TIMESTAMP)
	double VideoCapture::get(CAP_PROP_STATUS)
	bool VideoCapture::set(CAP_PROP_OUTPUT_SRC, double resampler)
	double VideoCapture::get(CAP_PROP_OUTPUT_SRC)
	bool VideoCapture::set(CAP_PROP_OUTPUT_YUV, double enable)
	double VideoCapture::get(CAP_PROP_OUTPUT_YUV)
	bm_handle_t bmcv::getCard(int id = 0)
	int bmcv::getId(bm_handle_t handle)
	bm_status_t bmcv::toBMI(Mat &m, bm_image *image, bool update = true)
	bm_status_t bmcv::toBMI(Mat &m, Mat &m1, Mat &m2, Mat &m3, bm_image *image, bool update = true)
	bm_status_t bmcv::toMAT(Mat &in, Mat &m0, bool update=true)
	bm_status_t toMAT(bm_image *image, Mat &m, int color_space, int color_range, void* vaddr = NULL, int fd0 = -1, bool update = true, bool nocopy = true)
	bm_status_t bmcv::toMAT(bm_image *image, Mat &m0, bool update = true, csc_type_t csc = CSC_MAX_ENUM)
	bm_status_t bmcv::toMAT(bm_image *image, Mat &m0, Mat &m1, Mat &m2, Mat &m3, bool update=true, csc_type_t csc=CSC_MAX_ENUM)
	bm_status_t bmcv::resize(Mat &m, Mat &out, bool update = true, int interpolation= BMCV_INTER_NEAREST)
	bm_status_t bmcv::convert(Mat &m, Mat &out, bool update=true)
	bm_status_t bmcv::convert(Mat &m, std::vector<Rect> &vrt, std::vector<Size> &vsz, std::vector<Mat> &out, bool update= true, csc_type_t csc=CSC_YCbCr2RGB_BT601, csc_matrix_t *matrix = nullptr, bmcv_resize_algorithm algorithm= BMCV_INTER_LINEAR)
	bm_status_t bmcv::convert(Mat &m, std::vector<Rect> &vrt, bm_image *out, bool update= true)
	void bmcv::uploadMat(Mat &mat)
	void bmcv::downloadMat(Mat &mat)
	bm_status_t bmcv::stitch(std::vector<Mat> &in, std::vector<Rect>& srt, std::vector<Rect>& drt, Mat &out, bool update = true, bmcv_resize_algorithm algorithm = BMCV_INTER_LINEAR)
	void bmcv::print(Mat &m, bool dump = false)
	void bmcv::print(bm_image *image, bool dump)
	void bmcv::dumpMat(Mat &image, const String &fname)
	void bmcv::dumpBMImage(bm_image *image, const String &fname)
	bool Mat::avOK()
	int Mat::avCols()
	int Mat::avRows()
	int Mat::avFormat()
	int Mat::avAddr(int idx)
	int Mat::avStep(int idx)
	AVFrame* av::create(int height, int width, int color_format, void *data, long addr, int fd, int* plane_stride, int* plane_size, int color_space = AVCOL_SPC_BT709, int color_range = AVCOL_RANGE_MPEG, int id = 0)
	AVFrame* av::create(int height, int width, int id = 0)
	int av::copy(AVFrame *src, AVFrame *dst, int id)
	int av::get_scale_and_plane(int color_format, int wscale[], int hscale[])
	cv::Mat(AVFrame *frame, int id)
	cv::Mat(int height, int width, int total, int _type, const size_t* _steps, void* _data, unsigned long addr, int fd, SophonDevice device=SophonDevice())
	Mat::Mat(SophonDevice device)
	void Mat::create(AVFrame *frame, int id)
	void Mat::create(int height, int width, int total, int _type, const size_t* _steps, void* _data, unsigned long addr, int fd, int id = 0)
	void VideoWriter::write(InputArray image, char *data, int *len)
	virtual bool VideoCapture::grab(char *buf, unsigned int len_in, unsigned int *len_out);
	virtual bool VideoCapture::read_record(OutputArray image, char *buf, unsigned int len_in, unsigned int *len_out);

	OpenCV Extension for Hardware JPEG Decoder
	Output Image Data in YUV Format
	List of Functions Supporting YUV Format

	Specify the PCIE Device to Run Hardware Acceleration
	Definition of ID Parameter
	Specify the PCIE Device Using the ID Parameter

	The Calling Principles of OpenCV and BMCV API
	Introduction to National Standard GB28181 Interface in OpenCV
	General Steps Supported by National Standard GB28181
	GB28181 Url Format Definition

	BMCPU OPENCV Acceleration in PCIE Mode
	Concept Introduction
	Instructions for Use

	Code Example

	SOPHGO FFMPEG User Guide
	Preface
	Hardware Video Decoder
	Options Supported by Hardware Video Decoder

	Hardware Video Encoder
	Options Supported by Hardware Video Encoders

	Hardware JPEG Decoder
	Options Supported by the Hardware JPEG Decoder

	Hardware JPEG Encoder
	Options Supported by the Hardware JPEG Encoder

	Hardware Scale Filter
	Options Supported by the Hardware Scale Filter

	AVFrame Special Definition Description
	Definition of Avframe Interface Output by Hardware Decoder
	Definition of Avframe Interface Input by Hardware Encoder
	AVFrame Interface Definition of Hardware Filter Input and Output

	Application Examples of Hardware Acceleration in FFMPEG Command
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14

	Use Hardware Acceleration Function by Calling the API
	Hardware encoding Supporting roi encoding

	SOPHGO LIBYUV User Guide
	Introduction
	Libyuv Extension Description
	fast_memcpy
	RGB24ToI400
	RAWToI400
	I400ToRGB24
	I400ToRAW
	J400ToRGB24
	RAWToJ400
	J400ToRAW
	RAWToNV12
	RGB24ToNV12
	RAWToJ420
	J420ToRAW
	RAWToJ422
	J422ToRAW
	RGB24ToJ422
	J422ToRGB24
	RAWToJ444
	J444ToRAW
	RGB24ToJ444
	J444ToRGB24
	H420ToJ420
	I420ToJ420
	NV12ToJ420
	NV21ToJ420
	I444ToNV12
	I422ToNV12
	I400ToNV12

